Aqueous solutions of amphiphilic molecules are characterized by the competition between hydrophilic and hydrophobic interactions. These interactions have a different energetic dependence with the temperature. Whereas hydrophilic interactions have been well characterized, a complete theory for the hydrophobic ones is still lacking as well as the comprehension of the effect that the solvent exerts on the solute and vice versa. In this paper from the measured relaxation time, we evaluated the thermodynamic state functions of water-methanol solutions in the frame of the transition state theory. In particular we study the behavior of the Gibbs free energy, enthalpy and entropy of water, methanol and some of their solutions as a function of both temperature and water molar fraction. Our results indicate that the temperature of about 280 K represents a crossover between two regions dominated by hydrophobicity (high T) and hydrophilicity (low T).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2018.01.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!