Background: Myocardial infarction (MI) remains the most common cause of heart failure (HF) worldwide. For almost 50 years, HF has been recognized as a determinant of adverse prognosis after MI, but efforts to promote myocardial repair have failed to be translated into clinical therapies.
Aims: In this study, we investigated the effects of BRD4 on cardiac function and the underlying mechanism.
Material And Methods: The in vivo rat model of AMI and in vitro neonatal cardiomyocytes were established and cultured respectively, the BRD4 and NPPA/NPPB expression levels were detected by qPCR and Western blot, and interaction of BRD4 with acetylation RelA or NPPA/B promoters were examined by co-immunoprecipitation and chromatin immunoprecipitation assays, respectively.
Results: We found that BRD4 protein expression was significantly increased in cardiomyocytes of MI rat model and cardiomyocytes under hypoxia, accompanied by the expression of natriuretic peptide A (NPPA) and natriuretic peptide B (NPPB). Functionally, knockdown of BRD4 greatly downregulated the NPPA and NPPB in vivo and in vitro, improved the hemodynamic and biometric parameters in rat with heart failure, as well as decreased the apoptosis occurrence. In vitro studies further demonstrated that BRD4 bound with acetylated RelA to enhance the activation of NF-κb signaling, which resulted in activation of NPPA and NPPB transcriptions.
Conclusions: Taken together, our findings suggest that inhibition of BRD4 attenuated cardiomyocyte apoptosis via NF-κB pathway in myocardial infarction, and this study sheds light on developing new strategies to overcome myocardial damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-5922.12320 | DOI Listing |
Cell-type-specific activation of parvalbumin (PV)-expressing neurons in the external globus pallidus (GPe) through optogenetics has shown promise in facilitating long-lasting movement dysfunction recovery in mice with Parkinson's disease. However, its translational potential is hindered by adverse effects stemming from the invasive implantation of optical fibers into the brain. In this study, we have developed a non-invasive optogenetics approach, utilizing focused ultrasound-triggered mechanoluminescent nanotransducers to enable remote photon delivery deep in the brain for genetically targeted neuromodulation.
View Article and Find Full Text PDFUnlabelled: The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Biomedicine, University of Bergen, Bergen, Norway.
During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthopaedics and Traumatology, Gaziantep University Faculty of Medicine, Gaziantep, TUR.
Distraction osteogenesis is a valuable clinical technique used to address length discrepancies in long bone deformities. This procedure involves performing an osteotomy at an appropriate site in the bone and correcting the deformity through an extension system. This research aims to investigate the efficacy of a newly developed device for use in rat tibias and to provide an alternative to existing devices used in animal experiments.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
June 2024
Division of Pulmonary Circulation, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
Background: Pulmonary hypertension (PH) often leads to right ventricle (RV) failure, a significant cause of morbidity and mortality. Despite advancements in PH management, progression to RV maladaptation and subsequent failure remain a clinical challenge. This study explored the effect of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on RV function in a rat model of PH, hypothesizing that it improves RV function by inhibiting G protein-coupled receptor kinase 2 (GRK2) and altering myofilament protein phosphorylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!