Optic flow patterns generated by self-motion relative to the stationary environment result in congruent visual-vestibular self-motion signals. Incongruent signals can arise due to object motion, vestibular dysfunction, or artificial stimulation, which are less common. Hence, we are predominantly exposed to congruent rather than incongruent visual-vestibular stimulation. If the brain takes advantage of this probabilistic association, we expect observers to be more sensitive to visual optic flow that is congruent with ongoing vestibular stimulation. We tested this expectation by measuring the motion coherence threshold, which is the percentage of signal versus noise dots, necessary to detect an optic flow pattern. Observers seated on a hexapod motion platform in front of a screen experienced two sequential intervals. One interval contained optic flow with a given motion coherence and the other contained noise dots only. Observers had to indicate which interval contained the optic flow pattern. The motion coherence threshold was measured for detection of laminar and radial optic flow during leftward/rightward and fore/aft linear self-motion, respectively. We observed no dependence of coherence thresholds on vestibular congruency for either radial or laminar optic flow. Prior studies using similar methods reported both decreases and increases in coherence thresholds in response to congruent vestibular stimulation; our results do not confirm either of these prior reports. While methodological differences may explain the diversity of results, another possibility is that motion coherence thresholds are mediated by neural populations that are either not modulated by vestibular stimulation or that are modulated in a manner that does not depend on congruency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774822 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191693 | PLOS |
Int J Mol Sci
December 2024
Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph's Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA.
Traumatic optic neuropathy (TON) has been regarded a vision-threatening condition caused by either ocular or blunt/penetrating head trauma, which is characterized by direct or indirect TON. Injury happens during sports, vehicle accidents and mainly in military war and combat exposure. Earlier, we have demonstrated that remote ischemic post-conditioning (RIC) therapy is protective in TON, and here we report that AMPKα1 activation is crucial.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
: Central and branch retinal artery occlusion (CRAO and BRAO) are critical causes of acute vision loss, predominantly affecting older adults with systemic vascular pathology. These occlusions typically result from embolic events, leading to partial or complete retinal ischemia. : This retrospective case series report details of our 10-year experience using the 1064 nm Nd:YAG laser for Transluminal Nd:YAG Embolysis (TYE) in order to lyse visible emboli within the retinal arteries.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Chongqing Key Laboratory of Prevention and Treatment on Major Blinding Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Sci Rep
January 2025
Institute of Molecular and Clinical Ophthalmology Basel (IOB), Mittlere Strasse 91, 4031, Basel, Switzerland.
The eye and the heart are two closely interlinked organs, and many diseases affecting the cardiovascular system manifest in the eye. To contribute to the understanding of blood flow propagation towards the retina, we developed a method to acquire electrocardiogram (ECG) coupled time-resolved dynamic optical coherence tomography (OCT) images. This method allows for continuous synchronised monitoring of the cardiac cycle and retinal blood flow dynamics.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
Background/aim: Replication factor C subunit 3 (RFC3) is a critical component of the replication factor C complex, which is essential for DNA replication and repair. Recent studies have highlighted the RFC3's significance in various cancer types. Herein, we aimed to elucidate its biological role in cervical cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!