Histones H1 or linker histones are highly dynamic proteins that diffuse throughout the cell nucleus and associate with chromatin (DNA and associated proteins). This binding interaction of histone H1 with the chromatin is thought to regulate chromatin organization and DNA accessibility to transcription factors and has been proven to involve a kinetic process characterized by a population that associates weakly with chromatin and rapidly dissociates and another population that resides at a binding site for up to several minutes before dissociating. When considering differences between these two classes of interactions in a mathematical model for the purpose of describing and quantifying the dynamics of histone H1, it becomes apparent that there could be several assembly pathways that explain the kinetic data obtained in living cells. In this work, we model these different pathways using systems of reaction-diffusion equations and carry out a model comparison analysis using FRAP (fluorescence recovery after photobleaching) experimental data from different histone H1 variants to determine the most feasible mechanism to explain histone H1 binding to chromatin. The analysis favors four different chromatin assembly pathways for histone H1 which share common features and provide meaningful biological information on histone H1 dynamics. We show, using perturbation analysis, that the explicit consideration of high- and low-affinity associations of histone H1 with chromatin in the favored assembly pathways improves the interpretation of histone H1 experimental FRAP data. To illustrate the results, we use one of the favored models to assess the kinetic changes of histone H1 after core histone hyperacetylation, and conclude that this post-transcriptional modification does not affect significantly the transition of histone H1 from a weakly bound state to a tightly bound state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774818 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191562 | PLOS |
J Clin Psychiatry
January 2025
Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, and Department of Psychiatry, New York University School of Medicine, New York, New York.
There are few established treatments for negative symptoms in schizophrenia, which persist in many patients after positive symptoms are reduced. Oxidative stress, inflammation, and epigenetic modifications involving histone deacetylase (HDAC) have been implicated in the pathophysiology of schizophrenia. Sulforaphane has antioxidant properties and is an HDAC inhibitor.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.
View Article and Find Full Text PDFBiogerontology
January 2025
Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye.
Spermatogenesis is finely regulated by histone methylation, which is crucial for regulating gene expression and chromatin remodeling. Functional studies have demonstrated that the histone lysine methyltransferases (KMTs) SETD1B, CFP1, SETDB1, G9A, and SETD2 play pivotal roles in spermatogenesis through establishing the key histone methylation marks, H3K4me3, H3K9me2, H3K9me3, and H3K36me3, respectively. This study aimed to evaluate the spatiotemporal expression of these KMTs and methylation marks as well as senescence-associated β-galactosidase (β-GAL), transcriptional activity, and apoptosis rates in mouse testes during biological aging.
View Article and Find Full Text PDFElife
January 2025
Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States.
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder. Although individuals with variants in the SMC1A gene are less commonly seen in CdLS, they exhibit a high incidence of epilepsy and atypical phenotypic variability.
Methods: The clinical data of a patient with non-classic CdLS and epilepsy caused by an SMC1A variant were summarized.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!