FBXL10 contributes to the development of diffuse large B-cell lymphoma by epigenetically enhancing ERK1/2 signaling pathway.

Cell Death Dis

Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.

Published: January 2018

Epigenetic modifiers have emerged as critical factors governing the biology of different cancers. Herein we show that FBXL10 (also called KDM2B or JHDM1B), an important member of Polycomb repressive complexes, is overexpressed in human diffuse large B-cell lymphoma (DLBCL) tissues and the derived cell lines. Knocking down FBXL10 by specific short hairpin RNAs in DLBCL cells inhibits cell proliferation and induces apoptosis in vitro. Moreover, FBXL10 depletion in DLBCL cells abrogates tumor growth in mouse xenograft models. Through the analysis of RNA sequencing, we find that one of the key derepressed genes by depletion of FBXL10 is DUSP6, encoding a phosphatase for ERK1/2. Mechanistically FBXL10 maintains the silencing of DUSP6 expression via recruitment of Polycomb group proteins and deposition of repressive histone modifications at the DUSP6 promoter. Consistently, FBXL10 is required for ERK1/2 phosphorylation in DLBCL cells. Furthermore, we show that ERK1/2 activation and the proliferation rate of FBXL10-depleted cells can be rescued by downregulation of DUSP6 expression. These findings indicate that FBXL10 may be a promising therapeutic target in DLBCL and establish a link of epigenetic regulators to kinase signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833345PMC
http://dx.doi.org/10.1038/s41419-017-0066-8DOI Listing

Publication Analysis

Top Keywords

dlbcl cells
12
fbxl10
8
diffuse large
8
large b-cell
8
b-cell lymphoma
8
dusp6 expression
8
dlbcl
5
fbxl10 contributes
4
contributes development
4
development diffuse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!