Local Corticotropin-Releasing Factor Signaling in the Hypothalamic Paraventricular Nucleus.

J Neurosci

The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, 77030

Published: February 2018

Corticotropin-releasing factor (CRF) neurons in the hypothalamic paraventricular nucleus (PVN) initiate hypothalamic-pituitary-adrenal axis activity through the release of CRF into the portal system as part of a coordinated neuroendocrine, autonomic, and behavioral response to stress. The recent discovery of neurons expressing CRF receptor type 1 (CRFR1), the primary receptor for CRF, adjacent to CRF neurons within the PVN, suggests that CRF also signals within the hypothalamus to coordinate aspects of the stress response. Here, we characterize the electrophysiological and molecular properties of PVN-CRFR1 neurons and interrogate their monosynaptic connectivity using rabies virus-based tracing and optogenetic circuit mapping in male and female mice. We provide evidence that CRF neurons in the PVN form synapses on neighboring CRFR1 neurons and activate them by releasing CRF. CRFR1 neurons receive the majority of monosynaptic input from within the hypothalamus, mainly from the PVN itself. Locally, CRFR1 neurons make GABAergic synapses on parvocellular and magnocellular cells within the PVN. CRFR1 neurons resident in the PVN also make long-range glutamatergic synapses in autonomic nuclei such as the nucleus of the solitary tract. Selective ablation of PVN-CRFR1 neurons in male mice elevates corticosterone release during a stress response and slows the decrease in circulating corticosterone levels after the cessation of stress. Our experiments provide evidence for a novel intra-PVN neural circuit that is activated by local CRF release and coordinates autonomic and endocrine function during stress responses. The hypothalamic paraventricular nucleus (PVN) coordinates concomitant changes in autonomic and neuroendocrine function to organize the response to stress. This manuscript maps intra-PVN circuitry that signals via CRF, delineates CRF receptor type 1 neuron synaptic targets both within the PVN and at distal targets, and establishes the role of this microcircuit in regulating hypothalamic-pituitary-adrenal axis activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5824736PMC
http://dx.doi.org/10.1523/JNEUROSCI.1492-17.2017DOI Listing

Publication Analysis

Top Keywords

crfr1 neurons
16
hypothalamic paraventricular
12
paraventricular nucleus
12
crf neurons
12
crf
11
neurons
10
corticotropin-releasing factor
8
pvn
8
nucleus pvn
8
hypothalamic-pituitary-adrenal axis
8

Similar Publications

Corticotropin-releasing hormone (CRH) signaling through its cognate receptors, CRHR1 and CRHR2, contributes to diverse stress-related functions in the mammalian brain. Whereas CRHR2 is predominantly expressed in choroid plexus and blood vessels, CRHR1 is abundantly expressed in neurons in discrete brain regions, including the neocortex, hippocampus and nucleus accumbens. Activation of CRHR1 influences motivated behaviors, emotional states, and learning and memory.

View Article and Find Full Text PDF

Introduction: Corticotropin-releasing factor receptor 1 (CRFR1) is a key regulator of neuroendocrine and behavioral stress responses. Previous studies have demonstrated that CRFR1 in certain hypothalamic and preoptic brain areas is modified by chronic stress and during the postpartum period in female mice, although the potential hormonal contributors to these changes are unknown.

Methods: This study focused on determining the contributions of hormones associated with stress and the maternal period (glucocorticoids, prolactin, estradiol/progesterone) on CRFR1 levels using a CRFR1-GFP reporter mouse line and immunohistochemistry.

View Article and Find Full Text PDF

Rationale: Alcohol exposure during adolescence has been linked to long-lasting behavioral consequences, contributing to the development of alcohol use disorder. Negative affect and chronic pain during alcohol withdrawal are critical factors influencing problematic alcohol use and relapse. Our previous research demonstrated that adolescent intermittent ethanol (AIE) vapor exposure elicits sex-specific negative affect-like behavior in adult mice following stress exposure.

View Article and Find Full Text PDF

Introduction: The mesolimbic reward system is associated with the promotion and rewarding benefits of social relationships. In the socially monogamous prairie vole (), the establishment of a pair bond can be displayed by a robust preference for a breeding partner and aggressive rejection of unfamiliar conspecifics. Mesolimbic dopamine signaling influences bond-related behaviors within the vole through dopamine transmission and receptor activity in the nucleus accumbens.

View Article and Find Full Text PDF

Mild traumatic brain injury (mTBI) is a significant health burden due to mTBI-related chronic debilitating cognitive and psychiatric morbidities. Recent evidence from our laboratory suggests a possible dysregulation within reward/motivational circuit function at the level of a subcortical structure, the lateral habenula (LHb), where we demonstrated a causal role for hyperactive LHb in mTBI-induced motivational deficits in self-care grooming behavior in young adult male mice when exposed to mTBI during late adolescence (at ∼8 weeks old). In this study, we extended this observation by further characterizing neurobehavioral effects of this repetitive closed head injury model of mTBI in both young adult male and female mice on LHb excitability, corticotropin releasing factor (CRF) modulation of LHb activity, and behavioral responses of motivation to self-care behavior and approach versus avoidance behavior in the presence of a social- or threat-related stimulus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!