Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biology has, and continues to be, shaped by evolutionary mechanisms. Within the past decade, local fitness landscapes have become experimentally tractable and are providing new perspectives on evolutionary mechanisms. Powered by next-generation sequencing, the impacts of all individual amino acid substitutions on function have been quantified for dozens of proteins. These fitness maps have been utilized to investigate the biophysical underpinnings of existing protein function as well as the appearance and enhancement of new protein functions. This review highlights emerging trends from this rapidly growing area of research, including an expanded understanding of the biophysical mechanisms underlying existing and new protein function, the roles epistasis and adaptation play in shaping evolution, and the prediction of disease-causing alleles in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.sbi.2018.01.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!