Background: Infectious disease is the single greatest threat to taxa such as amphibians (chytrid fungus), bats (white nose syndrome), Tasmanian devils (devil facial tumor disease), and black-footed ferrets (canine distemper virus, plague). Although understanding the genetic basis to disease susceptibility is important for the long-term persistence of these groups, most research has been limited to major-histocompatibility and Toll-like receptor genes. To better understand the genetic basis of infectious disease susceptibility in a species of conservation concern, we sequenced all known/predicted immune response genes (i.e., the immunomes) in 16 Florida gopher tortoises, Gopherus polyphemus. All tortoises produced antibodies against Mycoplasma agassizii (an etiologic agent of infectious upper respiratory tract disease; URTD) and, at the time of sampling, either had (n = 10) or lacked (n = 6) clinical signs.

Results: We found several variants associated with URTD clinical status in complement and lectin genes, which may play a role in Mycoplasma immunity. Thirty-five genes deviated from neutrality according to Tajima's D. These genes were enriched in functions relating to macromolecule and protein modifications, which are vital to immune system functioning.

Conclusions: These results are suggestive of genetic differences that might contribute to disease severity, a finding that is consistent with other mycoplasmal diseases. This has implications for management because tortoises across their range may possess genetic variation associated with a more severe response to URTD. More generally: 1) this approach demonstrates that a broader consideration of immune genes is better able to identify important variants, and; 2) this data pipeline can be adopted to identify alleles associated with disease susceptibility or resistance in other taxa, and therefore provide information on a population's risk of succumbing to disease, inform translocations to increase genetic variation for disease resistance, and help to identify potential treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775545PMC
http://dx.doi.org/10.1186/s12864-018-4452-0DOI Listing

Publication Analysis

Top Keywords

infectious disease
12
disease susceptibility
12
disease
10
genetic basis
8
genes better
8
genetic variation
8
genes
6
genetic
5
identifying genome-wide
4
immune
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!