AI Article Synopsis

  • Circadian rhythms play a crucial role in regulating metabolism at various biological levels, and disruptions can lead to serious health issues like obesity and diabetes.
  • A semimechanistic mathematical model was developed to investigate how disruptions in circadian rhythms affect glucose production in the liver, incorporating factors like light-dark cycles and feeding-fasting patterns.
  • The model was validated with animal data, and simulations indicated that targeting local pathways associated with feeding-fasting rhythms could help restore normal glucose metabolism in cases of disruption.

Article Abstract

The circadian rhythms influence the metabolic activity from molecular level to tissue, organ, and host level. Disruption of the circadian rhythms manifests to the host's health as metabolic syndromes, including obesity, diabetes, and elevated plasma glucose, eventually leading to cardiovascular diseases. Therefore, it is imperative to understand the mechanism behind the relationship between circadian rhythms and metabolism. To start answering this question, we propose a semimechanistic mathematical model to study the effect of circadian disruption on hepatic gluconeogenesis in humans. Our model takes the light-dark cycle and feeding-fasting cycle as two environmental inputs that entrain the metabolic activity in the liver. The model was validated by comparison with data from mice and rat experimental studies. Formal sensitivity and uncertainty analyses were conducted to elaborate on the driving forces for hepatic gluconeogenesis. Furthermore, simulating the impact of Clock gene knockout suggests that modification to the local pathways tied most closely to the feeding-fasting rhythms may be the most efficient way to restore the disrupted glucose metabolism in liver.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032066PMC
http://dx.doi.org/10.1152/ajpendo.00271.2017DOI Listing

Publication Analysis

Top Keywords

hepatic gluconeogenesis
12
circadian rhythms
12
circadian disruption
8
metabolic activity
8
circadian
5
mathematical analysis
4
analysis circadian
4
metabolic
4
disruption metabolic
4
metabolic re-entrainment
4

Similar Publications

Role of hepatocyte-specific FOXO1 in hepatic glucolipid metabolic disorders induced by perfluorooctane sulfonate.

Environ Pollut

January 2025

Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:

Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Endurance training enhances hepatic gluconeogenesis, especially in the presence of norepinephrine (NE), even without other hormones.
  • Trained rat liver cells show significantly higher gluconeogenesis and lactate uptake compared to untrained controls, particularly when stimulated by NE.
  • Additionally, trained hepatocytes exhibit increased glucose production in the presence of palmitate, underscoring the metabolic adaptations resulting from endurance training.
View Article and Find Full Text PDF

Integrated hepatic transcriptomics and metabolomics identify Pck1 as a key factor in the broad dysregulation induced by vehicle pollutants.

Part Fibre Toxicol

December 2024

Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.

Background: Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity.

View Article and Find Full Text PDF

Regulation of bile acids and their receptor FXR in metabolic diseases.

Front Nutr

December 2024

Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.

High sugar, high-fat diets and unhealthy lifestyles have led to an epidemic of obesity and obesity-related metabolic diseases, seriously placing a huge burden on socio-economic development. A deeper understanding and elucidation of the specific molecular biological mechanisms underlying the onset and development of obesity has become a key to the treatment of metabolic diseases. Recent studies have shown that the changes of bile acid composition are closely linked to the development of metabolic diseases.

View Article and Find Full Text PDF

Aims: NAD deficiency underlies obesity-induced metabolic disturbances. This study evaluated dihydronicotinamide riboside (NRH), a potent NAD enhancer, in lean and obese mice and explored whether NRH operates through a unique mechanism involving adenosine kinase (ADK), an enzyme critical for NRH-driven NAD synthesis.

Methods: Pharmacokinetic and pharmacodynamic analyses were performed following a single 250 mg/kg intraperitoneal injection of NRH in healthy mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!