Purpose: Retinal prostheses can restore rudimentary vision in cases of photoreceptor degeneration through electrical stimulation, but face difficulties achieving high spatial resolution because electrical current is an inherently unnatural stimulus. We investigated the therapeutic feasibility of using patterned delivery of the glutamate neurotransmitter, a primary agent of natural synaptic communication of the retina, as a biomimetic chemical alternative to electrical current for neuromodulation of photoreceptor degenerate retina.
Methods: We injected small quantities of the neurotransmitter glutamate into the subretina of 20 explanted photoreceptor degenerated S334ter-3 rat retinas using glass micropipettes and a prototype multiport microfluidic device to accomplish single- and multisite stimulation in vitro. The effects of chemical stimulation were characterized by recording neural responses from retinal ganglion cells (RGCs) using a multielectrode array.
Results: Subretinally injected exogenous glutamate activates RGCs, despite the substantial anatomic and physiologic changes caused by retinal remodeling, eliciting robust neural responses. The presence of excitatory and inhibitory RGC responses provides evidence that exogenous glutamate differentially activated neurons presynaptic to RGCs, likely inner retinal neurons belonging to the OFF and ON pathways. We also demonstrate that glutamate injections can evoke focal RGC responses with spatial resolutions comparable to or better than current generation electrical prostheses and, when applied at multiple sites simultaneously with the multiport microfluidic device, can produce spatially patterned neural responses.
Conclusions: These significant results establish that chemical stimulation of degenerated retinas with neurotransmitters is an effective neuromodulation strategy with the potential of restoring high-resolution visual perception in patients rendered blind through photoreceptor degeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.17-23142 | DOI Listing |
Invest Ophthalmol Vis Sci
December 2024
The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Purpose: N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318.
The choroid is the thin, vasculature-filled layer of the eye situated between the sclera and the retina, where it serves the metabolic needs of the light-sensing photoreceptors in the retina. Illumination of the interior surface of the back of the eye (fundus) is a critical regulator of subretinal fluid homeostasis, which determines the overall shape of the eye, but it is also important for choroidal perfusion. Noted for having some of the highest blood flow rates in the body, the choroidal vasculature has been reported to lack intrinsic, intravascular pressure-induced (myogenic) autoregulatory mechanisms.
View Article and Find Full Text PDFNature
October 2024
Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Biomed Pharmacother
November 2024
Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy. Electronic address:
Glaucoma is a degenerative optic neuropathy in which the degeneration of optic nerve and blindness occur. The main cause is a malfunction of ciliary processes (protrusions of the ciliary bodies) resulting in increased intraocular pressure (IOP). Ocular hypertension (OHT) causes ischemic events leading to retinal ganglion cell (RGC) depletion and blindness.
View Article and Find Full Text PDFEMBO J
October 2024
College of Biological Sciences, China Agricultural University, Beijing, China.
Monoamine neurotransmitters generated by de novo synthesis are rapidly transported and stored into synaptic vesicles at axon terminals. This transport is essential both for sustaining synaptic transmission and for limiting the toxic effects of monoamines. Here, synthesis of the monoamine histamine by histidine decarboxylase (HDC) and subsequent loading of histamine into synaptic vesicles are shown to be physically and functionally coupled within Drosophila photoreceptor terminals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!