Fatty Acid Based Microemulsions to Combat Ophthalmia Neonatorum Caused by Neisseria gonorrhoeae and Staphylococcus aureus.

Nanomaterials (Basel)

Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK.

Published: January 2018

The bacterial species () and () are amongst the main microorganisms that cause ophthalmia neonatorum. The current treatment involves the use of various antibiotics such as ciprofloxacin, cephalosporin, ceftriaxone and cefotaxime. However, this treatment strategy is becoming more ineffective due to the antibiotic resistance in The current study explores the potential use of fatty acid based microemulsions (ME) to prevent and infections in new-borns' eyes without harmful side effects such as corneal or conjunctiva irritation. Pseudo-ternary phase diagrams were constructed to evaluate microemulsion regions and six different α-linolenic acid based microemulsions were prepared. The prepared formulations were characterized for α-linolenic acid content, size, transparency, zeta potential, Polarized light Microscopy, antimicrobial activity and ex vivo ocular toxicity. The mean droplet size of the ME formulations was in the range of 190.4 to 350.5 nm and polydispersity index (PDI) values were in the range of 0.102 to 0.561. All formulations were found stable upon storage for at least 8 weeks. In addition, self-diffusion coefficients determined by nuclear magnetic resonance (NMR) reflected that the diffusability of water increased at higher than 30% / water, while that of fatty acids and surfactants was in reverse. The antimicrobial efficacy of microemulsions was determined against and . It was concluded that all microemulsions have strong antimicrobial effects against and . Finally, bovine corneal opacity permeability (BCOP) and hen's egg chorioallantoic (HET-CAM) tests results showed that all microemulsion formulations were not strong ocular irritants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5791138PMC
http://dx.doi.org/10.3390/nano8010051DOI Listing

Publication Analysis

Top Keywords

acid based
12
based microemulsions
12
fatty acid
8
ophthalmia neonatorum
8
α-linolenic acid
8
microemulsions
5
microemulsions combat
4
combat ophthalmia
4
neonatorum caused
4
caused neisseria
4

Similar Publications

Flexible smart sensing materials are gaining tremendous momentum in wearable and bionic smart electronics. To satisfy the growing demand for sustainability and eco-friendliness, biomass-based hydrogel sensors for green and biologically safe wearable sensors have attracted significant attention. In this work, we have prepared MCC/PAA/AgNWs/CNTs hydrogel sensors with excellent conductive sensing properties by a simple physical blending method.

View Article and Find Full Text PDF

Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields.

View Article and Find Full Text PDF

Prospects of bovine milk small extracellular vesicles in veterinary medicine.

Res Vet Sci

January 2025

Laboratory of Food and Environmental Hygiene, Joint Department of Veterinary Medicine, Gifu University, Gifu, Japan; Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan; Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan. Electronic address:

Extracellular vesicles (EV), including exosomes or small EV (sEV) derived from biological fluids, such as milk, have garnered increasing interest in veterinary medicine because of their role in the pathophysiology and understanding of the disease status of the host. Bovine milk serves as a rich source of sEV, containing diverse cargoes of nucleic acids, proteins, and lipids, which play a critical role in intercellular communication and regulation of host status. Although it is more difficult to isolate and purify sEV from bovine milk than from human breast milk, challenges persist in enabling the enrichment and analysis of sEV populations, facilitating the elucidation of their functional roles and prognostic potential in cattle diseases.

View Article and Find Full Text PDF

Cancer is one of the most fatal diseases threatening public health globally, and tumor metastasis causes greater than 90 % of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of various human cancers. Cancer stem cells (CSCs) are a rare population of cancer cells and increasing evidences indicated CSCs are the driving force of tumor metastasis. In this study, a p-AuNSs-assisted single-cell Raman spectra has been established, to extract and amplify of CSCs fingerprints with single cell sensitivity.

View Article and Find Full Text PDF

As a core genetic biomolecule in ecosystems, the metabolic processes of DNA, particularly DNA replication and damage repair, are regulated by Flap endonuclease 1 (FEN1). Abnormal expression and dysfunction of FEN1 may lead to genomic instability, which can induce a variety of chromosome-associated disorders, including tumours. FEN1 has emerged as a prominent tumour marker.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!