A novel composite photocatalyst based on Cu₂ZnSnS₄ (CZTS) powders was synthesized and investigated for use as a photocatalyst. CZTS powders were first made using a conventional hydrothermal method and were then used to grow silver nanoparticles hybridized onto the CZTS under various conditions through a microwave-assisted hydrothermal process. After the obtained samples were subsequently mixed with 1T-2H MoS₂, the three synthesized component samples were characterized using X-ray diffractometry (XRD), scanning electron microscopy, transmission electron microscopy (FE-SEM, FE-TEM), UV-visible spectroscopy (UV-Vis), Brunauer-Emmet-Teller (BET), photoluminescence spectroscopy (PL), and X-ray photoelectron spectroscopy (XPS). The resulting samples were also used as photocatalysts for the degradation of methylene blue (MB) under a 300 W halogen lamp simulating sunlight with ~5% UV light. The photodegradation ability was greatly enhanced by the addition of Ag and 1T-2H MoS₂. Excellent photodegradation of MB was obtained under visible light. The effects of material characteristics on the photodegradation were investigated and discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793656 | PMC |
http://dx.doi.org/10.3390/ma11010158 | DOI Listing |
RSC Adv
January 2025
Institute of Fundamental Physics (AbinitSim Unit, ABINITFOT Group), Consejo Superior de Investigaciones Científicas (CSIC) E-28006 Madrid Spain
The unique structural properties of zeolites make them ideal environments for encapsulating subnanometric metal clusters on their microporous channels and cavities, showing an enhanced catalytic performance. As a first step towards the functionalization of these clusters as photocatalysts as well, this work addresses the optical properties of zeolite-encapsulated Cu-TiO nanoparticles as well as their application in the photo-induced activation of CO by sunlight. Model density functional theory (DFT) calculations indicate the stability of the Cu cluster adsorbed on the TiO nanoparticles filling the pores of a model zeolite structure.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:
Rapid charge recombination, limited light response, and slow surface reactions were observed in the photocatalysts, thereby limiting their future-oriented applications in photocatalytic hydrogen production through water splitting. Constructing a multi-channel charge separation photocatalysis system could solve those questions. In this study, Pd-TiO-CuO composites were successfully accomplished via a facile chemical reduction method.
View Article and Find Full Text PDFLangmuir
January 2025
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
Herein, first, MIL-125 samples were synthesized via a hydrothermal method. Then, Ag species were doping on the surface of MIL-125 samples via the photolysis of silver nitrate. Finally, the Z-scheme MIL-125/Ag/BiOBr composite was synthesized via a directed liquid assembly method.
View Article and Find Full Text PDFChemSusChem
January 2025
Guangxi Normal University, Chemistry and Pharmaceutical Sciences, CHINA.
Layered double hydroxides (LDHs), which resemble hydrotalcite, are a type of materials with cationic layers and exchangeable interlayer anions. They have drawn lots of curiosity as a high-temperature CO2 adsorbent because of its quick desorption/sorption kinetics and renewability. Due to its extensive divalent or trivalent cationic metals, high anion exchange property, memory effect, adjustable behavior, bio-friendliness, easy to prepare and relatively low cost, the LDHs-based materials are becoming increasingly popular for photocatalytic CO2 reduction reaction (CO2RR).
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata (IISER Kolkata), Campus Rd, Mohanpur, Haringhata Farm, West Bengal 741246, India.
Utilization of carbon dioxide (CO) as a C1 feedstock to synthesize value-added chemicals using a catalyst made from earth-abundant elements and under mild conditions is a sustainable approach toward carbon neutrality but difficult to achieve. Herein, the CoAlO/AlO composite catalyst is developed and used for the light-driven epoxide to value-added cyclic carbonate conversion using CO. CoAlO/AlO composite catalysts (% Co-AlO) are prepared by calcining cobalt-incorporated Al-oxy-hydroxide at 500 °C under an air atmosphere.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!