A novel composite photocatalyst based on Cu₂ZnSnS₄ (CZTS) powders was synthesized and investigated for use as a photocatalyst. CZTS powders were first made using a conventional hydrothermal method and were then used to grow silver nanoparticles hybridized onto the CZTS under various conditions through a microwave-assisted hydrothermal process. After the obtained samples were subsequently mixed with 1T-2H MoS₂, the three synthesized component samples were characterized using X-ray diffractometry (XRD), scanning electron microscopy, transmission electron microscopy (FE-SEM, FE-TEM), UV-visible spectroscopy (UV-Vis), Brunauer-Emmet-Teller (BET), photoluminescence spectroscopy (PL), and X-ray photoelectron spectroscopy (XPS). The resulting samples were also used as photocatalysts for the degradation of methylene blue (MB) under a 300 W halogen lamp simulating sunlight with ~5% UV light. The photodegradation ability was greatly enhanced by the addition of Ag and 1T-2H MoS₂. Excellent photodegradation of MB was obtained under visible light. The effects of material characteristics on the photodegradation were investigated and discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793656PMC
http://dx.doi.org/10.3390/ma11010158DOI Listing

Publication Analysis

Top Keywords

composite photocatalyst
8
photocatalyst based
8
czts powders
8
1t-2h mos₂
8
electron microscopy
8
based hydrothermally-synthesized
4
hydrothermally-synthesized cu₂znsns₄
4
cu₂znsns₄ powders
4
powders novel
4
novel composite
4

Similar Publications

The unique structural properties of zeolites make them ideal environments for encapsulating subnanometric metal clusters on their microporous channels and cavities, showing an enhanced catalytic performance. As a first step towards the functionalization of these clusters as photocatalysts as well, this work addresses the optical properties of zeolite-encapsulated Cu-TiO nanoparticles as well as their application in the photo-induced activation of CO by sunlight. Model density functional theory (DFT) calculations indicate the stability of the Cu cluster adsorbed on the TiO nanoparticles filling the pores of a model zeolite structure.

View Article and Find Full Text PDF

Type II/Schottky heterojunctions-triggered multi-channels charge transfer in Pd-TiO-CuO hybrid promotes photocatalytic hydrogen production.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:

Rapid charge recombination, limited light response, and slow surface reactions were observed in the photocatalysts, thereby limiting their future-oriented applications in photocatalytic hydrogen production through water splitting. Constructing a multi-channel charge separation photocatalysis system could solve those questions. In this study, Pd-TiO-CuO composites were successfully accomplished via a facile chemical reduction method.

View Article and Find Full Text PDF

Herein, first, MIL-125 samples were synthesized via a hydrothermal method. Then, Ag species were doping on the surface of MIL-125 samples via the photolysis of silver nitrate. Finally, the Z-scheme MIL-125/Ag/BiOBr composite was synthesized via a directed liquid assembly method.

View Article and Find Full Text PDF

Layered double hydroxides (LDHs), which resemble hydrotalcite, are a type of materials with cationic layers and exchangeable interlayer anions. They have drawn lots of curiosity as a high-temperature CO2 adsorbent because of its quick desorption/sorption kinetics and renewability. Due to its extensive divalent or trivalent cationic metals, high anion exchange property, memory effect, adjustable behavior, bio-friendliness, easy to prepare and relatively low cost, the LDHs-based materials are becoming increasingly popular for photocatalytic CO2 reduction reaction (CO2RR).

View Article and Find Full Text PDF

Utilization of carbon dioxide (CO) as a C1 feedstock to synthesize value-added chemicals using a catalyst made from earth-abundant elements and under mild conditions is a sustainable approach toward carbon neutrality but difficult to achieve. Herein, the CoAlO/AlO composite catalyst is developed and used for the light-driven epoxide to value-added cyclic carbonate conversion using CO. CoAlO/AlO composite catalysts (% Co-AlO) are prepared by calcining cobalt-incorporated Al-oxy-hydroxide at 500 °C under an air atmosphere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!