Clinical management of primary and secondary central nervous system (CNS) malignancies frequently includes radiotherapy to forestall tumor growth and recurrence after surgical resection. While cranial radiotherapy remains beneficial, adult and pediatric brain tumor survivors suffer from a wide range of debilitating and progressive cognitive deficits. Although this has been recognized as a significant problem for decades, there remains no clinical recourse for the unintended neurocognitive sequelae associated with these types of cancer treatments. In previous work, multiple mechanisms have been identified that contribute to radiation-induced cognitive dysfunction, including the inhibition of neurogenesis caused by the depletion of radiosensitive populations of stem and progenitor cells in the hippocampus. To explore the potential neuroprotective properties of a pro-neurogenic compound NSI-189, Long-Evans rats were subjected to a clinically relevant fractionated irradiation protocol followed by four weeks of NSI-189 administered daily by oral gavage. Animals were then subjected to five different behavioral tasks followed by an analysis of neurogenesis, hippocampal volume and neuroinflammation. Irradiated cohorts manifested significant behavioral decrements on all four spontaneous exploration tasks. Importantly, NSI-189 treatment resulted in significantly improved performance in four of these tasks: novel place recognition, novel object recognition, object in place and temporal order. In addition, there was a trend of improved performance in the contextual phase of the fear conditioning task. Importantly, enhanced cognition in the NSI-189-treated cohort was found to persist one month after the cessation of drug treatment. These neurocognitive benefits of NSI-189 coincided with a significant increase in neurogenesis and a significant decrease in the numbers of activated microglia compared to the irradiated cohort that was given vehicle alone. The foregoing changes were not accompanied by major changes in hippocampal volume. These data demonstrate that oral administration of a pro-neurogenic compound exhibiting anti-inflammatory indications could impart long-term neurocognitive benefits in the irradiated brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910029 | PMC |
http://dx.doi.org/10.1667/RR14879.1 | DOI Listing |
Int J Med Sci
January 2025
Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan.
Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT.
View Article and Find Full Text PDFBrain Sci
December 2024
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Radiation therapy is widely recognized as an efficacious modality for treating neoplasms located within the craniofacial region. Nevertheless, this approach is not devoid of risks, predominantly concerning potential harm to the neural structures. Adverse effects may encompass focal cerebral necrosis, cognitive function compromise, cerebrovascular pathology, spinal cord injury, and detriment to the neural fibers constituting the brachial plexus.
View Article and Find Full Text PDFRadiat Oncol J
December 2024
Department of Radiotherapy, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Purpose: Identifying comprehensively the evidence of neuroprotective effects of memantine for preserving cognitive function in brain metastasis patients receiving whole brain radiotherapy (WBRT).
Methods: We searched randomized clinical trials (RCTs) analyzing the effects of memantine to preserve cognitive function in patients with brain metastasis treated with WBRT, performed in some databases, including PubMed, Embase, and Cochrane Library. The protocol was registered at PROSPERO (CRD42023476632).
Exp Neurol
December 2024
School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China. Electronic address:
Various factors and mechanisms, including radiation, initiate cellular senescence and are concurrent with the progression of various neurodegenerative diseases. Radiation-induced chromosomal aberrations and DNA integrity damage impact the processes of cellular growth, maturation, and aging. Astragaloside IV (AS-IV) has been documented to display significant neuroprotective effects on inflammation, oxidative stress, and cellular apoptosis; however, the precise neuroprotective mechanism of AS-IV against neuronal aging remains unclear.
View Article and Find Full Text PDFQuant Imaging Med Surg
December 2024
Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.
Background: Radiation-induced brain injury (RBI) is a common complication in patients with nasopharyngeal carcinoma (NPC) who have undergone radiotherapy (RT), which is characterized by significant cognitive and psychological impairments. Although radiation-induced regional structural abnormalities have been well-reported, the effects of RT on the whole brain structural covariance networks are mostly unknown. Here, we performed a source-based morphometry (SBM) study to solve this issue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!