Unlabelled: The bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated sites is not running smoothly, because of the lower activity of PAH-degrading bacteria in actual bioremediation applications. The phenomenon of "viable but nonculturable" (VBNC) state may be a main limiting factor for their poor biodegradation capabilities of PAHs. Due to their abilities of entering into the VBNC state, most of bacterial populations with PAH-degradation potential remain unculturable. Resuscitation of VBNC bacteria will enhance the degradation capability of indigenous bacteria which will eventually obtain their better capabilities in environmental bioremediation. Although evidences have been presented indicating that resuscitation of VBNC bacteria in polychlorinated biphenyl (PCB)-contaminated environments not only significantly enhanced PCB degradation, but also obtained novel highly efficient PCB-degrading bacteria, scanty information is available on the VBNC bacteria in PAH-contaminated sites. VBNC bacteria, as a vast majority of potential microbial resource could be the repository of novel highly efficient PAH-biodegraders. Therefore, studies need to be done on resuscitation of VBNC bacteria to overcome key bottlenecks in bioremediation of PAH-contaminated sites. This mini-review provides a new insight into the potential functions of VBNC bacteria in PAHs biodegradation.
Significance And Impact Of The Study: As the vast majority microbial resource, viable but nonculturable (VBNC) bacteria, which showed their potential functions in polycyclic aromatic hydrocarbons (PAHs) biodegradation, can be of great significance in environmental bioremediation. It is therefore important to resuscitate VBNC bacteria for their better capabilities. Meanwhile, preventing the indigenous functional community from entering into the VBNC state will also maintain the high activity of PAH-degrading bacteria in actual bioremediation applications. Undoubtedly, much more work needs to be done to reveal indigenous micro-organisms in the VBNC state from the perspective of environmental functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/lam.12853 | DOI Listing |
Environ Microbiol
January 2025
Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L.
View Article and Find Full Text PDFMicroorganisms
December 2024
Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences" (FRC PSCBR RAS), 142290 Pushchino, Russia.
Phenol and its chlorinated derivatives are introduced into the environment with wastewater effluents from various industries, becoming toxic pollutants. Phenol-degrading bacteria are important objects of research; among them, representatives of the genus are often highlighted as promising. Strain 7Ba was isolated by enrichment culture.
View Article and Find Full Text PDFFront Microbiol
December 2024
Meat Safety and Quality Research Unit, U.S. Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, NE, United States.
Recent application of whole genome sequencing in the investigation of foodborne illness outbreaks has facilitated the identification of Reoccurring, Emerging, or Persistent (REP) bacterial strains that have caused illnesses over extended periods of time. Here, the complete genomes of two O157:H7 (EcO157) outbreak strains belonging to REPEXH01 and REPEXH02, respectively, were sequenced and annotated. Comparative genomics and phenotypic analyses were carried out to identify REP-associated traits.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland.
Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia.
Campylobacter jejuni, a major cause of foodborne zoonotic infections worldwide, shows a paradoxical ability to survive despite its susceptibility to environmental and food-processing stressors. This resilience is likely due to the bacterium entering a viable but non-culturable state, often within biofilms, or even initiating biofilm formation as a survival strategy. This study presents an innovative application of NanoLuc bioluminescence to accurately monitor the development of C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!