A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light. | LitMetric

Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light.

Photochem Photobiol

The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK.

Published: May 2018

Antimicrobial violet-blue light is an emerging technology designed for enhanced clinical decontamination and treatment applications, due to its safety, efficacy and ease of use. This systematized review was designed to compile the current knowledge on the antimicrobial efficacy of 380-480 nm light on a range of health care and food-related pathogens including vegetative bacteria, bacterial endospores, fungi and viruses. Data were compiled from 79 studies, with the majority focussing on wavelengths in the region of 405 nm. Analysis indicated that Gram-positive and Gram-negative vegetative bacteria are the most susceptible organisms, while bacterial endospores, viruses and bacteriophage are the least. Evaluation of the dose required for a 1 log reduction of key bacteria compared to population, irradiance and wavelength indicated that microbial titer and light intensity had little effect on the dose of 405 nm light required; however, linear analysis indicated organisms exposed to longer wavelengths of violet-blue light may require greater doses for inactivation. Additional research is required to ensure this technology can be used effectively, including: investigating inactivation of multidrug-resistant organisms, fungi, viruses and protozoa; further knowledge about the photodynamic inactivation mechanism of action; the potential for microbial resistance; and the establishment of a standardized exposure methodology.

Download full-text PDF

Source
http://dx.doi.org/10.1111/php.12883DOI Listing

Publication Analysis

Top Keywords

violet-blue light
12
vegetative bacteria
8
bacterial endospores
8
fungi viruses
8
analysis indicated
8
light
6
review comparative
4
comparative susceptibility
4
susceptibility microbial
4
microbial species
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!