Early vertebrate embryos possess cells with the potential to generate all embryonic cell types. While this pluripotency is progressively lost as cells become lineage restricted, Neural Crest cells retain broad developmental potential. Here, we provide novel insights into signals essential for both pluripotency and neural crest formation in . We show that FGF signaling controls a subset of genes expressed by pluripotent blastula cells, and find a striking switch in the signaling cascades activated by FGF signaling as cells lose pluripotency and commence lineage restriction. Pluripotent cells display and require Map Kinase signaling, whereas PI3 Kinase/Akt signals increase as developmental potential is restricted, and are required for transit to certain lineage restricted states. Importantly, retaining a high Map Kinase/low Akt signaling profile is essential for establishing Neural Crest stem cells. These findings shed important light on the signal-mediated control of pluripotency and the molecular mechanisms governing genesis of Neural Crest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790379PMC
http://dx.doi.org/10.7554/eLife.33845DOI Listing

Publication Analysis

Top Keywords

neural crest
20
lineage restricted
8
developmental potential
8
fgf signaling
8
cells
7
pluripotency
5
neural
5
crest
5
signaling
5
fgf mediated
4

Similar Publications

Nonylphenol exposure increases the risk of Hirschsprung's disease by inducing macrophage M1 polarization.

Ecotoxicol Environ Saf

January 2025

Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Pediatric Surgery, Guizhou Children Hospital, Zunyi, Guizhou 563000, China. Electronic address:

Nonylphenol (NP), a ubiquitous environmental contaminant used as a surfactant in industrial production and classified as an endocrine disruptor, could interfere hormone secretion and exhibit neurotoxicity in organisms. Hirschsprung's disease (HSCR), one of the most frequently observed congenital malformations of the digestive system, arises mainly due to the failure of enteric neural crest cells to migrate to the distal colon during embryonic development. However, the effects of NP exposure on HSCR are largely unknown.

View Article and Find Full Text PDF

Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.

Front Cell Dev Biol

January 2025

Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling.

View Article and Find Full Text PDF

Direct conversion is an innovative new technology that involves the conversion of somatic cells to target cells without passing through a pluripotent state. Forced expression alone or in combination with transcription factors (TFs), which are critical for the generation of target cells, is important for successful direct conversion. However, most somatic cells are unable to directly convert into target cells even with forced expression.

View Article and Find Full Text PDF

The digastric muscle is a suprahyoid muscle that is composed of an anterior belly and a posterior belly, which originate from the first and second pharyngeal arches, respectively, and they are innervated by the nerves of these arches. The digastric muscles are involved in the elevation of the hyoid bone and depression of the mandible during mastication, speech, and swallowing. In this report, we present the rare case of bilateral accessory anterior belly of the digastric muscles (ABDMs) that originated from the digastric fossa, medial to the anterior bellies.

View Article and Find Full Text PDF

Background: Hirschsprung disease (HSCR) is a rare neurodevelopmental disorder caused by disrupted migration and proliferation of enteric neural crest cells during enteric nervous system development. Genetic studies suggest a complex etiology involving both rare and common variants, but the contribution of ultra-rare pathogenic variants (PAs) remains poorly understood.

Methods: We perform whole-exome sequencing (WES) on 301 HSCR probands and 109 family trios, employing advanced statistical methods and gene prioritization strategies to identify genes carrying and ultra-rare coding pathogenic variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!