AI Article Synopsis

Article Abstract

OBJECTIVEThe aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH).METHODSThe database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7.RESULTSThe overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of < 5%. Prediction accuracy for survival on day 1 was 75.2%. The most important differentiating factor was the interleukin-6 (IL-6) level on day 1. Favorable functional outcome, defined as Glasgow Outcome Scale scores of 4 and 5, was observed in 68.6% of patients. Favorable functional outcome at all time points had a prediction accuracy of 71.1% in the training data set, with procalcitonin on day 1 being the most important differentiating factor at all time points. A total of 148 patients (27%) developed VP shunt dependency. The most important differentiating factor was hyperglycemia on admission.CONCLUSIONSThe multiple variable analysis capability of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2017.7.JNS17677DOI Listing

Publication Analysis

Top Keywords

decision tree
20
functional outcome
16
tree analysis
12
subarachnoid hemorrhage
12
data set
12
favorable functional
12
time points
12
differentiating factor
12
outcome parameters
8
aneurysmal subarachnoid
8

Similar Publications

Background: To reduce the mortality related to bladder cancer, efforts need to be concentrated on early detection of the disease for more effective therapeutic intervention. Strong risk factors (eg, smoking status, age, professional exposure) have been identified, and some diagnostic tools (eg, by way of cystoscopy) have been proposed. However, to date, no fully satisfactory (noninvasive, inexpensive, high-performance) solution for widespread deployment has been proposed.

View Article and Find Full Text PDF

The drug combination is an attractive approach for cancer treatment. PARP and kinase inhibitors have recently been explored against cancer cells, but their combination has not been investigated comprehensively. In this study, we used various drug combination databases to build ML models for drug combinations against brain cancer cells.

View Article and Find Full Text PDF

Three-dimensional (3D) LiDAR is crucial for the autonomous navigation of orchard mobile robots, offering comprehensive and accurate environmental perception. However, the increased richness of information provided by 3D LiDAR also leads to a higher computational burden for point cloud data processing, posing challenges to real-time navigation. To address these issues, this paper proposes a 3D point cloud optimization method based on the octree data structure for autonomous navigation of orchard mobile robots.

View Article and Find Full Text PDF

A novel non-invasive EEG-SSVEP diagnostic tool for color vision deficiency in individuals with locked-in syndrome.

Front Bioeng Biotechnol

January 2025

Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

Introduction: Color vision deficiency (CVD), a common visual impairment, affects individuals' ability to differentiate between various colors due to malfunctioning or absent color photoreceptors in the retina. Currently available diagnostic tests require a behavioral response, rendering them unsuitable for individuals with limited physical and communication abilities, such as those with locked-in syndrome. This study introduces a novel, non-invasive method that employs brain signals, specifically Steady-State Visually Evoked Potentials (SSVEPs), along with Ishihara plates to diagnose CVD.

View Article and Find Full Text PDF

A bird's-eye view of the biological mechanism and machine learning prediction approaches for cell-penetrating peptides.

Front Artif Intell

January 2025

Department of Genetic Engineering, Computational Biology Lab, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Chennai, India.

Cell-penetrating peptides (CPPs) are highly effective at passing through eukaryotic membranes with various cargo molecules, like drugs, proteins, nucleic acids, and nanoparticles, without causing significant harm. Creating drug delivery systems with CPP is associated with cancer, genetic disorders, and diabetes due to their unique chemical properties. Wet lab experiments in drug discovery methodologies are time-consuming and expensive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!