During development of the central nervous system not all axons are myelinated, and axons may have distinct myelination patterns. Furthermore, the number of myelin sheaths formed by each oligodendrocyte is highly variable. However, our current knowledge about the axo-glia communication that regulates the formation of myelin sheaths spatially and temporally is limited. By using axon-mimicking microfibers and a zebrafish model system, we show that axonal ephrin-A1 inhibits myelination. Ephrin-A1 interacts with EphA4 to activate the ephexin1-RhoA-Rock-myosin 2 signaling cascade and causes inhibition of oligodendrocyte process extension. Both in myelinating co-cultures and in zebrafish larvae, activation of EphA4 decreases myelination, whereas myelination is increased by inhibition of EphA4 signaling at different levels of the pathway, or by receptor knockdown. Mechanistically, the enhanced myelination is a result of a higher number of myelin sheaths formed by each oligodendrocyte, not an increased number of mature cells. Thus, we have identified EphA4 and ephrin-A1 as novel negative regulators of myelination. Our data suggest that activation of an EphA4-RhoA pathway in oligodendrocytes by axonal ephrin-A1 inhibits stable axo-glia interaction required for generating a myelin sheath.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/glia.23293 | DOI Listing |
Nat Neurosci
January 2025
Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.
Our understanding of Alzheimer's disease (AD) has transformed from a purely neuronal perspective to one that acknowledges the involvement of glial cells. Despite remarkable progress in unraveling the biology of microglia, astrocytes and vascular elements, the exploration of oligodendrocytes in AD is still in its early stages. Contrary to the traditional notion of oligodendrocytes as passive bystanders in AD pathology, emerging evidence indicates their active participation in and reaction to amyloid and tau pathology.
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of Education, Naval Medical University, Shanghai, China.
Myelin is the key structure for high-speed information transmission and is formed by oligodendrocytes (OLs) which are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system. Lipid is the main component of myelin and the role of lipid metabolism-related molecules in myelination attach increasing attention. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) mediates the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), and its role in myelination draws our interest as LPC is a classical demyelination inducer and PC is a major component of myelin.
View Article and Find Full Text PDFFront Immunol
January 2025
Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands.
Introduction: Remyelination of demyelinated axons can occur as an endogenous repair mechanism in multiple sclerosis (MS), but its efficacy varies between both MS individuals and lesions. The molecular and cellular mechanisms that drive remyelination remain poorly understood. Here, we studied the relation between microglia activation and remyelination activity in MS.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea.
Introduction: , primary rat oligodendrocytes (OLs) are widely used for research on OL development, physiology, and pathophysiology in demyelinating diseases such as multiple sclerosis. Primary culture methods for OLs from rats have been developed and improved over time, but there are still multiple aspects in which efficiency can be boosted.
Methods: To make use of excess oligodendrocyte progenitor cells (OPCs) from primary cultures, a cryopreservation process utilizing a commercially available serum-free cryopreservation medium was established to passage and freeze OPCs at -80°C for later use.
J Neurochem
January 2025
Institute for Physiology, University of Tübingen, Tübingen, Germany.
Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!