The use of small fields in radiation therapy techniques has increased substantially in particular in stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT). However, as field size reduces further still, the response of the detector changes more rapidly with field size, and the effects of measurement uncertainties become increasingly significant due to the lack of lateral charged particle equilibrium, spectral changes as a function of field size, detector choice, and subsequent perturbations of the charged particle fluence. This work presents a novel 3D dose volume-to-point correction method to predict the readings of a 0.015 cc PinPoint chamber (PTW 31014) for both small static-fields and composite-field dosimetry formed by fixed cones on the CyberKnife M6 machine. A 3D correction matrix is introduced to link the 3D dose distribution to the response of the PinPoint chamber in water. The parameters of the correction matrix are determined by modeling its 3D dose response in circular fields created using the 12 fixed cones (5 mm-60 mm) on a CyberKnife M6 machine. A penalized least-square optimization problem is defined by fitting the calculated detector reading to the experimental measurement data to generate the optimal correction matrix; the simulated annealing algorithm is used to solve the inverse optimization problem. All the experimental measurements are acquired for every 2 mm chamber shift in the horizontal planes for each field size. The 3D dose distributions for the measurements are calculated using the Monte Carlo calculation with the MultiPlan treatment planning system (Accuray Inc., Sunnyvale, CA, USA). The performance evaluation of the 3D conversion matrix is carried out by comparing the predictions of the output factors (OFs), off-axis ratios (OARs) and percentage depth dose (PDD) data to the experimental measurement data. The discrepancy of the measurement and the prediction data for composite fields is also performed for clinical SRS plans. The optimization algorithm used for generating the optimal correction factors is stable, and the resulting correction factors were smooth in the spatial domain. The measurement and prediction of OFs agree closely with percentage differences of less than 1.9% for all the 12 cones. The discrepancies between the prediction and the measurement PDD readings at 50 mm and 80 mm depth are 1.7% and 1.9%, respectively. The percentage differences of OARs between measurement and prediction data are less than 2% in the low dose gradient region, and 2%/1 mm discrepancies are observed within the high dose gradient regions. The differences between the measurement and prediction data for all the CyberKnife based SRS plans are less than 1%. These results demonstrate the existence and efficiency of the novel 3D correction method for small field dosimetry. The 3D correction matrix links the 3D dose distribution and the reading of the PinPoint chamber. The comparison between the predicted reading and the measurement data for static small fields (OFs, OARs and PDDs) yield discrepancies within 2% for low dose gradient regions and 2%/1 mm for high dose gradient regions; the discrepancies between the predicted and the measurement data are less than 1% for all the SRS plans. The 3D correction method provides an access to evaluate the clinical measurement data and can be applied to non-standard composite fields intensity modulated radiation therapy point dose verification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/aaa90d | DOI Listing |
Breast Cancer Res Treat
January 2025
Division of Medical Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
Purpose: There is an increasing incidence of young breast cancer (YBC) patients with uncertainty surrounding the factors and patterns that are contributing.
Methods: We obtained characteristics and survival data from 206,156 YBC patients (≤ 40 years of age) diagnosed between 2005 and 2019 from the National Cancer Database (NCDB). Patients were subdivided into two comparison groups based on year of diagnosis (2005-2009, Old vs.
J Ethn Subst Abuse
January 2025
Arizona State University, Tempe, Arizona.
Unlabelled: The large majority (over 70%) of American Indian adolescents who reside in cities rather than tribal lands or rural areas report relatively earlier onset of substance use and more harmful associated health effects, compared to their non-Native peers.
Objective: This study investigated multilevel ecodevelopmental influences on empirically derived patterns of substance use among urban American Indian adolescents.
Method: Data came from 8th, 10th, and 12th grade American Indian adolescents ( = 2,407) in metropolitan areas of Arizona.
Adv Sci (Weinh)
January 2025
DP Technology, Beijing, 100080, China.
Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.
View Article and Find Full Text PDFRheumatol Ther
January 2025
Biosplice Therapeutics, Inc., 9360 Towne Centre Dr, San Diego, CA, 92121, USA.
Introduction: Lorecivivint (LOR), a CDC-like kinase/dual-specificity tyrosine kinase (CLK/DYRK) inhibitor thought to modulate inflammatory and Wnt pathways, is being developed as a potential intra-articular knee osteoarthritis (OA) treatment. The objective of this trial was to evaluate long-term safety of LOR within an observational extension of two phase 2 trials.
Methods: This 60-month, observational extension study (NCT02951026) of a 12-month phase 2a trial (NCT02536833) and 6-month phase 2b trial (NCT03122860) was administratively closed after 36 months as data inferences became limited.
Arch Toxicol
January 2025
Cosmetics Europe, Brussels, Belgium.
Grouping of chemicals has been proposed as a strategy to speed up the screening and identification of potential substances of concern among the broad chemical universe under REACH. Such grouping is usually based on shared structural features and should only be used for the prioritization objectives. However, additional considerations (as well as structural similarity) are needed, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!