There is an urgent need for 3D cell culture systems that avoid the oversimplifications and artifacts of conventional culture in 2D. However, 3D culture within the cavities of porous biomaterials or large 3D structures harboring high cell numbers is limited by the needs to nurture cells and to remove growth-limiting metabolites. To overcome the diffusion-limited transport of such soluble factors in 3D culture, mixing can be improved by pumping, stirring or shaking, but this in turn can lead to other problems. Using pumps typically requires custom-made accessories that are not compatible with conventional cell culture disposables, thus interfering with cell production processes. Stirring or shaking allows little control over movement of scaffolds in media. To overcome these limitations, magnetic, macroporous hydrogels that can be moved or positioned within media in conventional cell culture tubes in a contactless manner are presented. The cytocompatibility of the developed biomaterial and the applied magnetic fields are verified for human hematopoietic stem and progenitor cells (HSPCs). The potential of this technique for perfusing 3D cultures is demonstrated in a proof-of-principle study that shows that controlled contactless movement of cell-laden magnetic hydrogels in culture media can mimic the natural influence of differently perfused environments on HSPCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.201701403 | DOI Listing |
Immunol Cell Biol
January 2025
Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
Natural killer (NK) cells are emerging agents for cancer therapy. Several different cytokines are used to generate NK cells for adoptive immunotherapy including interleukin (IL)-2, IL-12, IL-15 and IL-18 in solution, and membrane-bound IL-21. These cytokines drive NK cell activation through the integration of signal transducers and activators of transcription (STAT) and nuclear factor-kappa B (NF-κB) pathways, which overlap and synergize, making it challenging to predict optimal cytokine combinations for both proliferation and cytotoxicity.
View Article and Find Full Text PDFVirus Res
January 2025
Molecular Biology and Functional Genomics Platform, National Centre for Scientific and Technical Research (CNRST), Rabat, Morocco; Genomic Centre for Human Pathologies (GENOPATH), Neuroscience and Neurogenetics Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco. Electronic address:
This study investigates the evolution and genetic diversity of SARS-CoV-2 strains circulating in Morocco to track the spread, clade distributions and mutations of the virus across various regions from February 2020 to June 2024. The genome sequences were retrieved from the GISAID database. A total of 2630 SARS-CoV-2 genome sequences were analyzed using bioinformatic tools such as Nextclade, followed by phylogenetic and statistical analyses.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore; Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore; Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore. Electronic address:
Cultivated meats are typically hybrids of animal cells and plant proteins, but their high production costs limit their scalability. This study explores a cost-effective alternative by hypothesizing that controlling the Maillard and lipid thermal degradation reactions in pure cells can create a meaty aroma that could be extracted from minimal cell quantities. Using spontaneously immortalized porcine myoblasts and fibroblasts adapted to suspension culture with a 1 % serum concentration, we developed a method to isolate flavor precursors via freeze-thawing.
View Article and Find Full Text PDFEur J Oral Sci
January 2025
Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea.
The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.
View Article and Find Full Text PDFBiol Pharm Bull
January 2025
Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.
A 3-dimensional (3D) cell culture is now being actively pursued to accomplish the in vivo-like cellular morphology and biological functions in cell culture. We recently obtained nano-fibrillated bacterial cellulose (NFBC). In this study, we developed a novel NFBC-based 3D cell-culture system, the OnGel method, and the Suspension method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!