Total body irradiation (TBI) is frequently used in hematopoietic stem cell transplantation (HSCT) and is associated with many complications due to radiation injury to the normal cells, including normal stem cells. Nevertheless, the effects of TBI on the mesenchymal stromal stem cell (MSC) are not fully understood. Bone marrow-derived MSCs (BM-MSCs) isolated from normal adults were irradiated with 200 cGy twice daily for consecutive 3 days, a regimen identical to that used in TBI-conditioning HSCT. The characteristics, differentiation potential, cytogenetics, hematopoiesis-supporting function, and carcinogenicity of the irradiated BM-MSCs were then compared to the non-irradiated control. The irradiated and non-irradiated MSCs shared similar morphology, phenotype, and hematopoiesis-supporting function. However, irradiated MSCs showed much lower proliferative and differentiative potential. Irradiation also induced clonal cytogenetic abnormalities of MSCs. Nevertheless, the carcinogenicity of irradiated MSCs is low in vitro and in vivo. In parallel with the ex vivo irradiation experiments, decreased proliferative and differentiative abilities and clonal cytogenetic abnormalities can also be found in MSCs isolated from transplant recipients who had received TBI-based conditioning previously. Thus, TBI used in HSCT drastically injury MSCs and may contribute to the development of some long-term complications associated with clonal cytogenetic abnormality and poor adipogenesis and osteogenesis after TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00277-018-3231-y | DOI Listing |
Malays J Pathol
December 2024
Universiti Sains Malaysia, School of Medical Sciences, Human Genome Centre, Health Campus, Kelantan, Malaysia.
Multiple myeloma (MM), a clonal B-cell neoplasia, is an incurable and heterogeneous disease where survival ranges from a few months to more than 10 years. The clinical heterogeneity of MM arises from multiple genomic events that result in tumour development and progression. Recurring genomic abnormalities including cytogenetic abnormalities, gene mutations and abnormal gene expression profiles in myeloma cells have a strong prognostic power.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
Background/aim: Myelodysplastic syndromes (MDSs) are clonal bone marrow disorders characterized by ineffective hematopoiesis. They are classified based on morphology and genetic alterations, with SF3B1 variants linked to favorable prognosis and MECOM rearrangements associated with poor outcomes. The combined effects of these alterations remain unclear.
View Article and Find Full Text PDFBr J Haematol
December 2024
Department of Pathology and Laboratory, Oregon Health & Science University, Portland, Oregon, USA.
Acute myeloid leukaemia with NUP98 rearrangement (AML-NUP98) has been previously described in paediatric patients, and the clinical significance in adult AML patients remains largely unexplored. In this study, we identified specific partner fusion genes and examined somatic co-mutations and clonal evolution longitudinally in adult AML-NUP98 patients. Our comprehensive analysis provides an understanding of NUP98 rearrangement and co-mutations influencing clonal evolution and disease progression and offers valuable insights into potential therapeutic strategies.
View Article and Find Full Text PDFCancers (Basel)
November 2024
Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain.
Acute lymphoblastic leukemia (ALL) is a hematological neoplasm characterized by the clonal expansion of abnormal lymphoid precursors in bone marrow, which leads to alterations in the processes of cell differentiation and maturation as a consequence of genetic alterations. The integration of conventional methods, such as cytogenetics and immunophenotyping, and next-generation sequencing (NGS) has led to significant improvements at diagnosis and patient stratification; this has also allowed the discovery of several novel molecular entities with specific genetic variants that may drive the processes of leukemogenesis. Nevertheless, the understanding of the process of leukemogenesis remains a challenge since this disease persists as the most frequent cancer in children; it accounts for approximately one-quarter of adult acute leukemias, and the patient management may take into consideration the high intra- and inter-tumor heterogeneity and the relapse risk due to the various molecular events that can occur during clonal evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!