Post-translational modification by small ubiquitin-related modifier (SUMO) is a key regulator of cell physiology, modulating protein-protein and protein-DNA interactions. Recently, SUMO modifications were postulated to be involved in response to various stress stimuli. We aimed to identify the near complete set of proteins modified by SUMO and the dynamics of the modification in stress conditions in the higher eukaryote, Caenorhabditis elegans. We identified 874 proteins modified by SUMO in the worm. We have analyzed the SUMO modification in stress conditions including heat shock, DNA damage, arsenite induced cellular stress, ER and osmotic stress. In all these conditions the global levels of SUMOylation was significantly increased. These results show the evolutionary conservation of SUMO modifications in reaction to stress. Our analysis showed that SUMO targets are highly conserved throughout species. By comparing the SUMO targets among species, we approximated the total number of proteins modified in a given proteome to be at least 15-20%. We developed a web server designed for convenient prediction of potential SUMO modification based on experimental evidences in other species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773548PMC
http://dx.doi.org/10.1038/s41598-018-19424-9DOI Listing

Publication Analysis

Top Keywords

sumo targets
12
proteins modified
12
stress conditions
12
sumo
11
caenorhabditis elegans
8
evolutionary conservation
8
conservation sumo
8
sumo modifications
8
modified sumo
8
modification stress
8

Similar Publications

Deciphering the endogenous SUMO-1 landscape: a novel combinatorial peptide enrichment strategy for global profiling and disease association.

Chem Sci

December 2024

State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China

Small ubiquitin-like modifier (SUMO) plays a pivotal role in diverse cellular processes and is implicated in diseases such as cancer and neurodegenerative disorders. However, large-scale identification of endogenous SUMO-1 faces challenges due to limited enrichment methods and its lower abundance compared to SUMO-2/3. Here we propose a novel combinatorial peptide strategy, combined with anti-adhesive polymer development, to enrich endogenous SUMO-1 modified peptides, revealing a comprehensive SUMOylation landscape.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ-exposed astrocytes.

View Article and Find Full Text PDF

The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.

View Article and Find Full Text PDF

The functionalization of protein sidechains with highly water-soluble chlorotriazines (or derivatives thereof) using nucleophilic aromatic substitution reactions has been commonly employed to install various functional groups, including poly(ethylene glycol) tags or fluorogenic labels. Here, a poorly soluble dichlorotriazine with an appended indole is shown to react with a construct containing the disordered domain of BRCA1. Subsequently, this construct can undergo proteolytic cleavage to remove the SUMO-tag: the -terminal poly(His) tag is still effective for purification.

View Article and Find Full Text PDF

SENP3: Cancers and diseases.

Biochim Biophys Acta Rev Cancer

January 2025

Kunming University of Science and Technology, Medical School, Kunming 650500, China. Electronic address:

SUMOylation is a protein modification process that involves the covalent attachment of a small ubiquitin-like modifier (SUMO) to a specific lysine residue on the target protein. This modification can influence the function, localization, stability, and interactions of proteins, thereby regulating various cellular processes. Altering the SUMOylation of certain proteins is expected to be a potential approach for treating specific cancers and diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!