Ca influx triggers the release of synaptic vesicles at the presynaptic active zone (AZ). A quantitative characterization of presynaptic Ca signaling is critical for understanding synaptic transmission. However, this has remained challenging to establish at the required resolution. Here, we employ confocal and stimulated emission depletion (STED) microscopy to quantify the number (20-330) and arrangement (mostly linear 70 nm × 100-600 nm clusters) of Ca channels at AZs of mouse cochlear inner hair cells (IHCs). Establishing STED Ca imaging, we analyze presynaptic Ca signals at the nanometer scale and find confined elongated Ca domains at normal IHC AZs, whereas Ca domains are spatially spread out at the AZs of bassoon-deficient IHCs. Performing 2D-STED fluorescence lifetime analysis, we arrive at estimates of the Ca concentrations at stimulated IHC AZs of on average 25 µM. We propose that IHCs form bassoon-dependent presynaptic Ca-channel clusters of similar density but scalable length, thereby varying the number of Ca channels amongst individual AZs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773603PMC
http://dx.doi.org/10.1038/s41467-017-02612-yDOI Listing

Publication Analysis

Top Keywords

inner hair
8
quantitative optical
4
optical nanophysiology
4
nanophysiology signaling
4
signaling inner
4
hair cell
4
cell active
4
active zones
4
zones influx
4
influx triggers
4

Similar Publications

Optimized inner ear organoids for efficient hair cell generation and ototoxicity response modeling.

Sci China Life Sci

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.

Hair cells in the mammalian cochlea are highly vulnerable to damage from drug toxicity, noise exposure, aging, and genetic mutations, with no capacity for regeneration. Progress in hair cell protection research has been limited by the scarcity of cochlear tissue and suitable in vitro models. Here, we present a novel one-step, self-organizing inner ear organoid system optimized with small molecules, which bypasses the need for multi-step expansion and forced differentiation protocols.

View Article and Find Full Text PDF

Functional and Structural Changes in the Inner Ear and Cochlear Hair Cell Loss Induced by Hypergravity.

Int J Mol Sci

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea.

Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea.

View Article and Find Full Text PDF

The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.

View Article and Find Full Text PDF

Extent of genetic and epigenetic factor reprogramming via a single viral vector construct in deaf adult mice.

Hear Res

December 2024

Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia. Electronic address:

In the adult mammalian cochlea, hair cell loss is irreversible and causes deafness. The basic helix-loop transcription factor Atoh1 is essential for normal hair cell development in the embryonic ear. Over-expression of Atoh1 in the adult cochlea by gene therapy can convert supporting cells (cells that underlie hair cells) into a hair cell lineage.

View Article and Find Full Text PDF

The cochlea phenotypically differs from the vestibule in the Gfi1 mouse.

Dev Dyn

January 2025

Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, China.

Background: Previous studies with Gfi1-mutated lines have shown that Gfi1 is essential for hair cell maturation and survival.

Results: We analyzed the phenotype of another Gfi1-mutated line Gfi1 in the inner ears of neonates at P5-7 and found that the cochlea phenotypically differed from the vestibule in the Gfi1 mouse. Specifically, there was a marked reduction in hair cells in the cochlea, which was characterized by greater reductions in the outer hair cells but far less reductions (mainly in the basal turn) in the inner hair cells, whereas the vestibular hair cells remained unaffected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!