Plumbagin, an anti-cancer agent, is toxic to cells of multiple species. We investigated if plumbagin targets conserved biochemical processes. Plumbagin induced DNA damage and apoptosis in cells of diverse mutational background with comparable potency. A 3-5 fold increase in intracellular oxygen radicals occurred in response to plumbagin. Neutralization of the reactive oxygen species by N-acetylcysteine blocked apoptosis, indicating a central role for oxidative stress in plumbagin-mediated cell death. Plumbagin docks in the ubiquinone binding sites (Q and Q) of mitochondrial complexes I-III, the major sites for oxygen radicals. Plumbagin decreased oxygen consumption rate, ATP production and optical redox ratio (NAD(P)H/FAD) indicating interference with electron transport downstream of mitochondrial Complex II. Oxidative stress induced by plumbagin triggered an anti-oxidative response via activation of Nrf2. Plumbagin and the Nrf2 inhibitor, brusatol, synergized to inhibit cell proliferation. These data indicate that while inhibition of electron transport is the conserved mechanism responsible for plumbagin's chemotoxicity, activation of Nrf2 is the resulting anti-oxidative response that allows plumbagin to serve as a chemopreventive agent. This study provides the basis for designing potent and selective plumbagin analogs that can be coupled with suitable Nrf2 inhibitors for chemotherapy or administered as single agents to induce Nrf2-mediated chemoprevention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773707PMC
http://dx.doi.org/10.1038/s41598-018-19261-wDOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
electron transport
12
anti-oxidative response
12
plumbagin
11
oxygen radicals
8
activation nrf2
8
stress inhibition
4
inhibition mitochondrial
4
mitochondrial electron
4
transport nrf-2-mediated
4

Similar Publications

Clinical Relevance: Pseudoexfoliation syndrome (PXS) is a common age-related disorder associated with glaucoma and cataract. Despite its clinical importance, the pathogenesis of PXS is not yet fully understood.

Background: To evaluate levels of SCUBE-1 (signal peptide, CUB domain, and epidermal growth factor-like domain containing protein 1) in the serum and aqueous humour of patients with PXS in comparison with non-PXS controls.

View Article and Find Full Text PDF

Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.

View Article and Find Full Text PDF

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

A microfluidic coculture model for mapping signaling perturbations and precise drug screening against macrophage-mediated dynamic myocardial injury.

Acta Pharm Sin B

December 2024

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Macrophage-mediated inflammation plays a pivotal role in cardiovascular disease pathogenesis. However, current cell-based models lack a comprehensive understanding of crosstalk between macrophages and cardiomyocytes, hindering the discovery of effective therapeutic interventions. Here, a microfluidic model has been developed to facilitate the coculture of macrophages and cardiomyocytes, allowing for mapping key signaling pathways and screening potential therapeutic agents against inflammation-induced dynamic myocardial injury.

View Article and Find Full Text PDF

Background And Aim: A critical causative factor of oxidative stress and inflammation leading to several skin complications is ultraviolet-B (UVB) irradiation. (LR), or tiger milk mushroom, is native to Southeast Asia. Cold water extract of an LR cultivar, TM02® (xLr®) is a promising anti-oxidant and anti-inflammatory source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!