Non-mammalian models of multiple endocrine neoplasia type 2.

Endocr Relat Cancer

Department of Cell Developmental and Regenerative Biology, School of Biomedical Sciences, Icahn School of Medicine, New York, New York, USA

Published: February 2018

Twenty-five years ago, RET was identified as the primary driver of multiple endocrine neoplasia type 2 (MEN2) syndrome. MEN2 is characterized by several transformation events including pheochromocytoma, parathyroid adenoma and, especially penetrant, medullary thyroid carcinoma (MTC). Overall, MTC is a rare but aggressive type of thyroid cancer for which no effective treatment currently exists. Surgery, radiation, radioisotope treatment and chemotherapeutics have all shown limited success, and none of these approaches have proven durable in advanced disease. Non-mammalian models that incorporate the oncogenic RET isoforms associated with MEN2 and other RET-associated diseases have been useful in delineating mechanisms underlying disease progression. These models have also identified novel targeted therapies as single agents and as combinations. These studies highlight the importance of modeling disease in the context of the whole animal, accounting for the complex interplay between tumor and normal cells in controlling disease progression as well as response to therapy. With convenient access to whole genome sequencing data from expanded thyroid cancer patient cohorts, non-mammalian models will become more complex, sophisticated and continue to complement future mammalian studies. In this review, we explore the contributions of non-mammalian models to our understanding of thyroid cancer including MTC, with a focus on and (fish and fly) models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935467PMC
http://dx.doi.org/10.1530/ERC-17-0411DOI Listing

Publication Analysis

Top Keywords

non-mammalian models
16
thyroid cancer
12
multiple endocrine
8
endocrine neoplasia
8
neoplasia type
8
disease progression
8
models
5
non-mammalian
4
models multiple
4
type twenty-five
4

Similar Publications

The spread of multidrug-resistant microbes has made it necessary and urgent to develop new strategies to deal with the infections they cause. Some of these are based on nanotechnology, which has revolutionized many fields in medicine. Evaluating the safety and efficacy of these new antimicrobial strategies requires testing in animal models before being tested in clinical trials.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the degeneration of dopamine neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. While motor symptoms such as rigidity, tremor, bradykinesia/akinesia, and postural instability are well-recognized, non-motor symptoms including cognitive decline, depression, and anxiety also significantly impact patients' quality of life. Preclinical research utilizing animal models has been instrumental in understanding PD pathophysiology and exploring therapeutic interventions.

View Article and Find Full Text PDF

Palmitoylation-mediated NLRP3 inflammasome activation in teleosts highlights evolutionary divergence in immune regulation.

Zool Res

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.

NLRP3 inflammasome activation is pivotal for cytokine secretion and pyroptosis in response to diverse stimuli, playing a crucial role in innate immunity. While extensively studied in mammals, the regulatory mechanisms governing NLRP3 activation in non-mammalian vertebrates remain largely unexplored. Teleosts, as basal vertebrates, represent an ideal model for exploring the evolutionary trajectory of inflammasome regulation.

View Article and Find Full Text PDF

Quantitative proteomics of regenerating and non-regenerating spinal cords in Xenopus.

Dev Biol

December 2024

School of Biological and Chemical Sciences, University of Galway, Biomedical Sciences Building, Newcastle Road, Galway, H91 W2TY, Ireland. Electronic address:

Spinal cord injury in humans is a life-changing condition with no effective treatment. However, many non-mammalian vertebrates can fully regenerate their spinal cord after injury. Frogs such as Xenopus can regenerate the spinal cord at larval stages, but lose this capacity at metamorphosis.

View Article and Find Full Text PDF

The workshop titled State of the Science on Assessing Developmental Neurotoxicity Using New Approach Methods was co-organized by University of Maryland's Joint Institute for Food Safety and Applied Nutrition (JIFSAN) and the U.S. Food and Drug Administration's (FDA) Center for Food Safety and Applied Nutrition (CFSAN; now called the Human Foods Program), and was hosted by FDA in College Park, MD on November 14-15, 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!