A human pathogen, Neisseria gonorrhoeae (NG), moves on surfaces by attaching and retracting polymeric structures called Type IV pili. The tug-of-war between the pili results in a two-dimensional stochastic motion called twitching motility. In this paper, with the help of real-time NG trajectories, we develop coarse-grained models for their description. The fractal properties of these trajectories are determined and their influence on first passage time and formation of bacterial microcolonies is studied. Our main observations are as follows: (i) NG performs a fast ballistic walk on small time scales and a slow diffusive walk over long time scales with a long crossover region; (ii) there exists a characteristic persistent length l_{p}^{*}, which yields the fastest growth of bacterial aggregates or biofilms. Our simulations reveal that l_{p}^{*}∼L^{0.6}, where L×L is the surface on which the bacteria move; (iii) the morphologies have distinct fractal characteristics as a consequence of the ballistic and diffusive motion of the constituting bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.96.052411DOI Listing

Publication Analysis

Top Keywords

twitching motility
8
passage time
8
time scales
8
motility bacteria
4
bacteria type-iv
4
type-iv pili
4
pili fractal
4
fractal walks
4
walks passage
4
time
4

Similar Publications

Article Synopsis
  • The study focused on analyzing multidrug-resistant (MDR) isolates for their ability to form biofilms and the presence of associated genes at a hospital in Nepal.
  • A significant majority of the isolates were found to be strong biofilm producers, with 195 out of 200 being MDR and 192 capable of biofilm formation.
  • Cinnamaldehyde was the most effective compound in inhibiting biofilm formation, with essential oils and Tween 80 also showing high efficacy, providing insights for potential treatment options against these resistant strains.
View Article and Find Full Text PDF

Structure of the Pseudomonas aeruginosa PAO1 Type IV pilus.

PLoS Pathog

December 2024

Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom.

Type IV pili (T4Ps) are abundant in many bacterial and archaeal species, where they play important roles in both surface sensing and twitching motility, with implications for adhesion, biofilm formation and pathogenicity. While Type IV pilus (T4P) structures from other organisms have been previously solved, a high-resolution structure of the native, fully assembled T4P of Pseudomonas aeruginosa, a major human pathogen, would be valuable in a drug discovery context. Here, we report a 3.

View Article and Find Full Text PDF

Programming Surface Motility and Modulating Physiological Behaviors of Bacteria via Biosurfactant-Mimetic Polyurethanes.

ACS Appl Mater Interfaces

December 2024

School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States.

Modulating microbial motility and physiology can enhance the production of bacterial macromolecules and small molecules. Herein, a platform of water-soluble and amphiphilic peptidomimetic polyurethanes is reported as a means of regulating bacterial surface behavior and the concomitant production of extracellular polymeric substances (EPS). It is demonstrated that carboxyl (-COOH)-containing polyurethanes exhibited 17-fold and 80-fold enhancements in () swarming and twitching areas, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • The human oral and nasal microbiota consists of around 770 cultivable bacterial species, with over 2,000 genome sequences available in the expanded Human Oral Microbiome Database (eHOMD).
  • Researchers created a Python tool called HOMDscrape to help retrieve and analyze data regarding bacterial motility from eHOMD.
  • The study focused on the evolutionary relationships of motile bacteria, specifically examining the type 9 secretion system (T9SS) and its role in bacterial motility, which may influence how these bacteria coexist in the human oral microbiota.
View Article and Find Full Text PDF

All cultivated Patescibacteria, or CPR, exist as obligate episymbionts on other microbes. Despite being ubiquitous in mammals and environmentally, molecular mechanisms of host identification and binding amongst ultrasmall bacterial episymbionts are largely unknown. Type 4 pili (T4P) are well conserved in this group and predicted to facilitate symbiotic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!