Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Redfield theory provides a closed kinetic description of a quantum system in weak contact with a very dense reservoir. Landau-Zener theory does the same for a time-dependent driven system in contact with a sparse reservoir. Using a simple model, we analyze the validity of these two theories by comparing their predictions with exact numerical results. We show that despite their a priori different range of validity, these two descriptions can give rise to an identical quantum master equation. Both theories can be used for a nonequilibrium thermodynamic description, which we show is consistent with exact thermodynamic identities evaluated in the full system-reservoir space. We emphasize the importance of properly accounting for the system-reservoir interaction energy and of operating in regimes where the reservoir can be considered as close to ideal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.96.052132 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!