Using classical density functional theory, we investigate systems exhibiting interactions where a short-range anisotropic attractive force competes with a long-range spherically symmetric repulsive force. The former is modelled within Wertheim's first-order perturbation theory for patchy particles, and the repulsive part is assumed to be a Yukawa potential which is taken into account via a mean-field approximation. From previous studies of systems with spherically symmetric competing interactions, it is well known that such systems can exhibit stable bulk cluster phases (microphase separation) provided that the repulsion is sufficiently weak compared to the attraction. For the present model system, we find rich phase diagrams including both reentrant clustering and liquid-gas binodals. In particular, the model predicts inhomogeneous bulk phases at extremely low packing fractions, which cannot be observed in systems with isotropic competing interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.96.042607DOI Listing

Publication Analysis

Top Keywords

competing interactions
12
density functional
8
functional theory
8
spherically symmetric
8
phase behavior
4
behavior bulk
4
bulk structural
4
structural properties
4
properties microphase
4
microphase anisotropic
4

Similar Publications

Calprotectin's Protein Structure Shields Ni-N(His) Bonds from Competing Agents.

J Phys Chem Lett

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system.

View Article and Find Full Text PDF

Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.

View Article and Find Full Text PDF

This study examined the interplay of psychopathic traits, executive functioning, and antisocial behavior among adjudicated youth, with a focus on the potential moderating role of executive function. The current study uses data from the Pathways to Desistance dataset was examined, utilizing the Psychopathy Checklist: Youth Version (PCL-YV) and the Stroop Color-Word Task to measure psychopathic traits and executive functioning, respectively. Violent and property offending frequencies were self-reported.

View Article and Find Full Text PDF

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!