How anisotropy beats fractality in two-dimensional on-lattice diffusion-limited-aggregation growth.

Phys Rev E

Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom.

Published: October 2017

We study the fractal structure of diffusion-limited aggregation (DLA) clusters on a square lattice by extensive numerical simulations (with clusters having up to 10^{8} particles). We observe that DLA clusters undergo strongly anisotropic growth, with the maximal growth rate along the axes. The naive scaling limit of a DLA cluster by its diameter is thus deterministic and one-dimensional. At the same time, on all scales from the particle size to the size of the entire cluster it has a nontrivial box-counting fractal dimension which corresponds to the overall growth rate, which, in turn, is smaller than the growth rate along the axes. This suggests that the fractal nature of the lattice DLA should be understood in terms of fluctuations around the one-dimensional backbone of the cluster.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.96.042159DOI Listing

Publication Analysis

Top Keywords

growth rate
12
dla clusters
8
rate axes
8
growth
5
anisotropy beats
4
beats fractality
4
fractality two-dimensional
4
two-dimensional on-lattice
4
on-lattice diffusion-limited-aggregation
4
diffusion-limited-aggregation growth
4

Similar Publications

Biokinetic models can optimise pollutant degradation and enhance microbial growth processes, aiding to protect ecosystem protection. Traditional biokinetic approaches (such as Monod, Haldane, etc.) can be challenging, as they require detailed knowledge of the organism's metabolism and the ability to solve numerous kinetic differential equations based on the principles of micro, molecular biology and biochemistry (first engineering principles) which can lead to discrepancies between predicted and actual degradation rates.

View Article and Find Full Text PDF

Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.

View Article and Find Full Text PDF

Purpose: Mobocertinib is an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that targets exon 20 insertion (ex20ins) mutations in non-small cell lung cancer (NSCLC). This open-label, phase III trial (EXCLAIM-2: ClinicalTrials.gov identifier: NCT04129502) compared mobocertinib versus platinum-based chemotherapy as first-line treatment of ex20ins+ advanced/metastatic NSCLC.

View Article and Find Full Text PDF

Background: Insulin resistance often occurs in patients with chronic kidney disease (CKD) owing to mineral and bone metabolism disorders. Fibroblast growth factor (FGF)-23 and soluble klotho (s-KL) play crucial roles in linking CKD with mineral and bone metabolism.

Objective: This study aimed to examine the relationship between insulin resistance and FGF-23 and s-KL in patients with non-diabetic pre-dialysis patients with CKD.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!