The ability to reliably predict critical transitions in dynamical systems is a long-standing goal of diverse scientific communities. Previous work focused on early warning signals related to local bifurcations (critical slowing down) and nonbifurcation-type transitions. We extend this toolbox and report on a characteristic scaling behavior (critical attractor growth) which is indicative of an impending global bifurcation, an interior crisis in excitable systems. We demonstrate our early warning signal in a conceptual climate model as well as in a model of coupled neurons known to exhibit extreme events. We observed critical attractor growth prior to interior crises of chaotic as well as strange-nonchaotic attractors. These observations promise to extend the classes of transitions that can be predicted via early warning signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.96.042211 | DOI Listing |
Biosensors (Basel)
December 2024
Academy for Engineering and Technology, Yiwu Research Institute, Fudan University, Shanghai 200433, China.
The prevention and early warning of foot ulcers are crucial in diabetic care; however, early microvascular lesions are difficult to detect and often diagnosed at later stages, posing serious health risks. Infrared thermal imaging, as a rapid and non-contact clinical examination technology, can sensitively detect hidden neuropathy and vascular lesions for early intervention. This review provides an informative summary of the background, mechanisms, thermal image datasets, and processing techniques used in thermal imaging for warning of diabetic foot ulcers.
View Article and Find Full Text PDFJMIR Med Inform
December 2024
Center for Geriatrics & Gerontology, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect 4, Taichung, 407219, Taiwan, 886 4-2359-2525, 886 4-2359-5046.
Background: Telehealth programs and wearable sensors that enable patients to monitor their vital signs have expanded due to the COVID-19 pandemic. The electronic National Early Warning Score (e-NEWS) system helps identify and respond to acute illness.
Objective: This study aimed to implement and evaluate a comprehensive telehealth system to monitor vital signs using e-NEWS for patients receiving integrated home-based medical care (iHBMC).
J Biomed Phys Eng
December 2024
Faculty of Medicine, Szeged University, Szeged, Hungary.
During the early days of the COVID-19 pandemic, low dose radiation therapy (LDRT) was proposed as a potentially effective treatment method. To minimize potential toxicity, the initial treatment approach involved a few mGy of adapting radiation followed by a single 250 mGy whole lung challenging dose. However, antiviral drugs were also introduced as a promising treatment option, which were thought to have the potential to revolutionize the management of the crisis.
View Article and Find Full Text PDFFront Public Health
December 2024
School of Economics and Management, Sanming University, Sanming, China.
Poverty alleviation is critical for sustainable development. Establishing a major public health emergency warning and prevention mechanism for poverty alleviation and marginal populations can effectively determine the overall risk situation and primary risk components in diverse regions. It is conducive to formulate specific policies for risk prevention and control of public health emergencies to prevent the occurrence of poverty relapses.
View Article and Find Full Text PDFGeroscience
December 2024
School of Nursing, Southern Medical University, No. 1023 Shatai Road (South), Baiyun District, Guangzhou City, Guangdong Province, China.
This study aims to analyze the characteristics of EEG microstates across different cognitive frailty (CF) subtypes, providing insights for the prevention and early diagnosis of CF. This study included 60 eligible older adults. Their resting-state EEG microstates were analyzed using agglomerative adaptive hierarchical clustering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!