Towards uncovering the structure of power fluctuations of wind farms.

Phys Rev E

Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA.

Published: December 2017

The structure of the turbulence-driven power fluctuations in a wind farm is fundamentally described from basic concepts. A derived tuning-free model, supported with experiments, reveals the underlying spectral content of the power fluctuations of a wind farm. It contains two power-law trends and oscillations in the relatively low- and high-frequency ranges. The former is mostly due to the turbulent interaction between the flow and the turbine properties, whereas the latter is due to the advection between turbine pairs. The spectral wind-farm scale power fluctuations Φ_{P} exhibit a power-law decay proportional to f^{-5/3-2} in the region corresponding to the turbulence inertial subrange and at relatively large scales, Φ_{P}∼f^{-2}. Due to the advection and turbulent diffusion of large-scale structures, a spectral oscillation exists with the product of a sinusoidal behavior and an exponential decay in the frequency domain.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.96.063117DOI Listing

Publication Analysis

Top Keywords

power fluctuations
16
fluctuations wind
12
wind farm
8
uncovering structure
4
power
4
structure power
4
fluctuations
4
wind farms
4
farms structure
4
structure turbulence-driven
4

Similar Publications

This study investigates the spatio-temporal distribution of formaldehyde (HCHO) over the mainland Southeast Asian region (including Northeast India) from 2019 to 2022 using TROPOMI satellite data. HCHO is a key atmospheric trace gas which is influenced by both natural processes and anthropogenic activities. We analyze HCHO levels in relation to atmospheric species including carbon monoxide (CO), nitrogen dioxide (NO), and environmental factors such as land surface temperature (LST), precipitation (PPT), fire radiative power (FRP), and enhanced vegetation index (EVI).

View Article and Find Full Text PDF

Advanced low-power filter architecture for biomedical signals with adaptive tuning.

PLoS One

January 2025

Computer Engineering, CCSIT, King Faisal University, Al Hufuf, Kingdom of Saudi Arabia.

This paper presents a low-power, second-order composite source-follower-based filter architecture optimized for biomedical signal processing, particularly ECG and EEG applications. Source-follower-based filters are recommended in the literature for high-frequency applications due to their lower power consumption when compared to filters with alternative topologies. However, they are not suitable for biomedical applications requiring low cutoff frequencies as they are designed to operate in the saturation region.

View Article and Find Full Text PDF

Load frequency control (LFC) is critical for maintaining stability in interconnected power systems, addressing frequency deviations and tie-line power fluctuations due to system disturbances. Existing methods often face challenges, including limited robustness, poor adaptability to dynamic conditions, and early convergence in optimization. This paper introduces a novel application of the sinh cosh optimizer (SCHO) to design proportional-integral (PI) controllers for a hybrid photovoltaic (PV) and thermal generator-based two-area power system.

View Article and Find Full Text PDF

Purpose: To investigate the impact of the distance from the most-anterior surface of the optic to the principal object plane (POP) and from the foremost haptic to the principal object plane (H-POP) on the intraocular lens (IOL) power calculation.

Setting: A tertiary hospital.

Design: Optical simulation and retrospective cross-sectional study.

View Article and Find Full Text PDF

Surfacic networks.

PNAS Nexus

January 2025

Faculty of Architecture, and Urban Systems Institute, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR.

Surfacic networks are structures built upon a 2D manifold. Many systems, including transportation networks and various urban networks, fall into this category. The fluctuations of node elevations imply significant deviations from typical plane networks and require specific tools to understand their impact.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!