Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study shows that a relativistic Hall effect significantly changes the properties of wave propagation by deriving a linear dispersion relation for relativistic Hall magnetohydrodynamics (HMHD). Whereas, in nonrelativistic HMHD, the phase and group velocities of fast magnetosonic wave become anisotropic with an increasing Hall effect, the relativistic Hall effect brings upper bounds to the anisotropies. The Alfvén wave group velocity with strong Hall effect also becomes less anisotropic than the nonrelativistic case. Moreover, the group velocity surfaces of Alfvén and fast waves coalesce into a single surface in the direction other than near perpendicular to the ambient magnetic field. It is also remarkable that a characteristic scale length of the relativistic HMHD depends on ion temperature, magnetic field strength, and density while the nonrelativistic HMHD scale length, i.e., ion skin depth, depends only on density. The modified characteristic scale length increases as the ion temperature increases and decreases as the magnetic field strength increases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.96.013207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!