We analyze passive scalar advection by a turbulent flow in the Batchelor regime. No restrictions on the velocity statistics of the flow are assumed. The properties of the scalar are derived from the statistical properties of velocity; analytic expressions for the moments of scalar density are obtained. We show that the scalar statistics can differ significantly from that obtained in the frames of the Kraichnan model.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.96.013117DOI Listing

Publication Analysis

Top Keywords

passive scalar
8
turbulent flow
8
flow batchelor
8
batchelor regime
8
scalar transport
4
transport non-gaussian
4
non-gaussian turbulent
4
regime analyze
4
analyze passive
4
scalar
4

Similar Publications

The coarsening dynamics at late times in phase-separating systems lead to universally hyperuniform patterns. This is well known for scalar field theories, such as the Cahn-Hilliard equation, but has also been shown for dry scalar active field theories. We demonstrate the role of hydrodynamic interactions in influencing hyperuniformity in a wet active system described by active model H.

View Article and Find Full Text PDF

Fully-convolutional neural networks (FCN) were proven to be effective for predicting the instantaneous state of a fully-developed turbulent flow at different wall-normal locations using quantities measured at the wall. In Guastoni et al. (J Fluid Mech 928:A27, 2021.

View Article and Find Full Text PDF

These notes provide an introduction to phase ordering in dry, scalar active matter. We first briefly review Model A and Model B, the long-standing continuum descriptions of ordering in systems with a non-conserved and conserved scalar order parameter. We then contrast different ways in which the field theories can be extended so that the phase ordering persists, but in systems that are active and do not reach thermodynamic equilibrium.

View Article and Find Full Text PDF

This study presents an investigation of an innovative microfluidic flow separator using both numerical and experimental approaches to calibrate contrast-enhanced ultrasound scanners. Numerical simulations were conducted using Lagrangian particles tracking and passive scalar transport methodologies using the OpenFOAM software. The experimental validation confirmed the accuracy of the numerical simulations, particularly at an imposed total pressure of , showing an excellent agreement in particle distributions.

View Article and Find Full Text PDF

Inertia Drives Concentration-Wave Turbulence in Swimmer Suspensions.

Phys Rev Lett

October 2024

Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, Telangana, India.

We discover an instability mechanism in suspensions of self-propelled particles that does not involve active stress. Instead, it is driven by a subtle interplay of inertia, swimmer motility, and concentration fluctuations, through a crucial time lag between the velocity and the concentration field. The resulting time-persistent state seen in our high-resolution numerical simulations consists of self-sustained waves of concentration and orientation, transiting from regular oscillations to wave turbulence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!