Diffusion can be conceptualized, at microscopic scales, as the random hopping of particles between neighboring lattice sites. In the case of diffusion in inhomogeneous media, distinct spatial domains in the system may yield distinct particle hopping rates. Starting from the master equations (MEs) governing diffusion in inhomogeneous media we derive here, for arbitrary spatial dimensions, the deterministic lattice equations (DLEs) specifying the average particle number at each lattice site for randomly diffusing particles in inhomogeneous media. We consider the case of free (Fickian) diffusion with no steric constraints on the maximum particle number per lattice site as well as the case of diffusion under steric constraints imposing a maximum particle concentration. We find, for both transient and asymptotic regimes, excellent agreement between the DLEs and kinetic Monte Carlo simulations of the MEs. The DLEs provide a computationally efficient method for predicting the (average) distribution of randomly diffusing particles in inhomogeneous media, with the number of DLEs associated with a given system being independent of the number of particles in the system. From the DLEs we obtain general analytic expressions for the steady-state particle distributions for free diffusion and, in special cases, diffusion under steric constraints in inhomogeneous media. We find that, in the steady state of the system, the average fraction of particles in a given domain is independent of most system properties, such as the arrangement and shape of domains, and only depends on the number of lattice sites in each domain, the particle hopping rates, the number of distinct particle species in the system, and the total number of particles of each particle species in the system. Our results provide general insights into the role of spatially inhomogeneous particle hopping rates in setting the particle distributions in inhomogeneous media.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.96.032139 | DOI Listing |
Materials (Basel)
December 2024
School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
Ceramic armor protection with complex shapes is limited by the difficult molding or machining processing, and 3D printing technology provides a feasible method for complex-shaped ceramics. In this study, ZrO ceramics were manufactured by 3D printing accompanied with microwave sintering. In 3D printing, the formula of photosensitive resin was optimized by controlling the content of polyurethane acrylic (PUA) as oligomer, and the photosensitive resin with 50% PUA showed excellent curing performance with a small volume shrinkage of 4.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.
Propagation of membrane tension mediates mechanical signal transduction along surfaces of live cells and sets the time scale of mechanical equilibration of cell membranes. Recent studies in several cell types and under different conditions revealed a strikingly wide variation range of the tension propagation speeds including extremely low ones. The latter suggests a possibility of long-living inhomogeneities of membrane tension crucially affecting mechano-sensitive membrane processes.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
Based on our previous study [Wang et al., J. Chem.
View Article and Find Full Text PDFJ Magn Reson
December 2024
UNB MRI Research Centre, Department of Physics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada. Electronic address:
Multinuclear H, C, and Na magnetic resonance (MR) has many advantages for studying porous media systems containing hydrocarbons and brine. In recent work, we have explored changing the nucleus measured, keeping the Larmor frequency constant, by changing the static magnetic field B. Increasing the static B field distorts the field in the pore space due to susceptibility mismatch between the matrix and pore fluid.
View Article and Find Full Text PDFMicrosc Res Tech
November 2024
Institute of Electrophysics UB RAS, Ekaterinburg, Russia.
Analysis of indentation data of heterogeneous material, in particular, layer on an elastic substrate requires information about the contact area that is essential for calculating mechanical properties. The actual shape of the AFM-tip is not described by simple body of revolution. In this work, the indentation of a stiff layer on a hyperelastic substrate by a truncated conical tip is studied using finite element methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!