Cortical geometry as a determinant of brain activity eigenmodes: Neural field analysis.

Phys Rev E

School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia.

Published: September 2017

Perturbation analysis of neural field theory is used to derive eigenmodes of neural activity on a cortical hemisphere, which have previously been calculated numerically and found to be close analogs of spherical harmonics, despite heavy cortical folding. The present perturbation method treats cortical folding as a first-order perturbation from a spherical geometry. The first nine spatial eigenmodes on a population-averaged cortical hemisphere are derived and compared with previous numerical solutions. These eigenmodes contribute most to brain activity patterns such as those seen in electroencephalography and functional magnetic resonance imaging. The eigenvalues of these eigenmodes are found to agree with the previous numerical solutions to within their uncertainties. Also in agreement with the previous numerics, all eigenmodes are found to closely resemble spherical harmonics. The first seven eigenmodes exhibit a one-to-one correspondence with their numerical counterparts, with overlaps that are close to unity. The next two eigenmodes overlap the corresponding pair of numerical eigenmodes, having been rotated within the subspace spanned by that pair, likely due to second-order effects. The spatial orientations of the eigenmodes are found to be fixed by gross cortical shape rather than finer-scale cortical properties, which is consistent with the observed intersubject consistency of functional connectivity patterns. However, the eigenvalues depend more sensitively on finer-scale cortical structure, implying that the eigenfrequencies and consequent dynamical properties of functional connectivity depend more strongly on details of individual cortical folding. Overall, these results imply that well-established tools from perturbation theory and spherical harmonic analysis can be used to calculate the main properties and dynamics of low-order brain eigenmodes.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.96.032413DOI Listing

Publication Analysis

Top Keywords

cortical folding
12
eigenmodes
11
cortical
9
brain activity
8
eigenmodes neural
8
neural field
8
cortical hemisphere
8
spherical harmonics
8
previous numerical
8
numerical solutions
8

Similar Publications

Macroscale neuroimaging results have revealed significant differences in the structural and functional connectivity patterns of gyri and sulci in the primate cerebral cortex. Despite these findings, understanding these differences at the molecular level has remained challenging. This study leverages a comprehensive dataset of whole-brain in situ hybridization (ISH) data from marmosets, with updates continuing through 2024, to systematically analyze cortical folding patterns.

View Article and Find Full Text PDF

Our research aimed to assess if correlations could be found between items evaluated at the cerebral ultrasound performed at term-equivalent age (TEA) and neuro-motor outcomes evaluated at 12 and 24 months of corrected age in a group of preterm infants. The following were assessed: the Levine Index, the diagonals of the lateral ventricles, the size of the ventricular midbody, the sinocortical distance, the width of the basal ganglia, the cortical depth at the level of the cingular sulcus and the maturation of the gyral folding. The neurologic evaluation was performed at 12 and 24 months of corrected age, according to the Amiel Tison neurologic examination, and the items from the calendar of motor acquisitions were used as outcome measures of the study-gross and fine motor subsets.

View Article and Find Full Text PDF

Background: Congenital mesoblastic nephroma represents 3-10% of all pediatric renal tumors. With the advancement of ultrasound diagnostics and magnetic resonance imaging, the diagnosis of this renal neoplasm is increasingly being established prenatally and at birth. It usually presents as a benign tumor, but it can severely affect pregnancy outcomes, contributing to perinatal morbidity and mortality.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is a vital organelle responsible for protein quality control, including the folding, modification, and transport of proteins. When misfolded or unfolded proteins accumulate in the ER, it triggers endoplasmic reticulum stress (ERS) and activates the unfolded protein response (UPR) to restore ER homeostasis. However, prolonged or excessive ERS can lead to apoptosis.

View Article and Find Full Text PDF

Purpose: The impact of ventriculomegaly (VM) on cortical development and brain functionality has been extensively explored in existing literature. VM has been associated with higher risks of attention-deficit and hyperactivity disorders, as well as cognitive, language, and behavior deficits. Some studies have also shown a relationship between VM and cortical overgrowth, along with reduced cortical folding, both in fetuses and neonates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!