Paraffin odor intensity is an important quality indicator when a paraffin inspection is performed. Currently, paraffin odor level assessment is mainly dependent on an artificial sensory evaluation. In this paper, we developed a paraffin odor analysis system to classify and grade four kinds of paraffin samples. The original feature set was optimized using Principal Component Analysis (PCA) and Partial Least Squares (PLS). Support Vector Machine (SVM), Random Forest (RF), and Extreme Learning Machine (ELM) were applied to three different feature data sets for classification and level assessment of paraffin. For classification, the model based on SVM, with an accuracy rate of 100%, was superior to that based on RF, with an accuracy rate of 98.33-100%, and ELM, with an accuracy rate of 98.01-100%. For level assessment, the R² related to the training set was above 0.97 and the R² related to the test set was above 0.87. Through comprehensive comparison, the generalization of the model based on ELM was superior to those based on SVM and RF. The scoring errors for the three models were 0.0016-0.3494, lower than the error of 0.5-1.0 measured by industry standard experts, meaning these methods have a higher prediction accuracy for scoring paraffin level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795501PMC
http://dx.doi.org/10.3390/s18010285DOI Listing

Publication Analysis

Top Keywords

paraffin odor
12
level assessment
12
accuracy rate
12
paraffin
8
paraffin samples
8
model based
8
based svm
8
superior based
8
comparison svm
4
elm
4

Similar Publications

Effects of Pelletized and Coated Organic Fertilizers on Flavor Compounds of Tomato Fruits and Leaves.

Foods

May 2024

Institute of Plant Nutrition, Resource and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.

The application of organic fertilizers is one of the most important agricultural measures aimed at improving the flavor and productivity of , with the granulation and coating of organic fertilizers, which can reduce seepage losses of great significance to the ecosystem. In this study, Jingcai 8 tomato was selected as the test material. Headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) methods were used to investigate the effects of different pelletized organic fertilizers and various coating materials on the flavor profile of the tomatoes.

View Article and Find Full Text PDF

The intensity of the odor in food-grade paraffin waxes is a pivotal quality characteristic, with odor panel ratings currently serving as the primary criterion for its assessment. This study presents an innovative method for assessing odor intensity in food-grade paraffin waxes, employing headspace gas chromatography with mass spectrometry (HS/GC-MS) and integrating total ion spectra with advanced machine learning (ML) algorithms for enhanced detection and quantification. Optimization was conducted using Box-Behnken design and response surface methodology, ensuring precision with coefficients of variance below 9%.

View Article and Find Full Text PDF

The objective of this study is to assess the efficacy of a solution including honey, ethyl alcohol, liquid paraffin, distilled water and citric acid (HEFS) as a preservative for rabbit cadavers, serving as a potential substitute for formaldehyde. The cadavers underwent preservation using three distinct solutions: 10% formalin, 35% alcohol and HEFS. The cadavers were subjected to a total of four sampling events, occurring at 4-month intervals, in order to collect specimens for microanatomical, histological, microbiological, mycological, colourimetric, texture and odour analysis.

View Article and Find Full Text PDF

Background  is a pure and clean animal fat derived from milk and is often recognized as clarified butter. It is used in Ayurvedic medicine as an excellent base for preparing various formulations due to its ability to penetrate deep tissue and be easily absorbed. Cow ghee possesses antioxidant, antibacterial, anti-inflammatory, and antiseptic properties, making it beneficial for treating skin-associated problems.

View Article and Find Full Text PDF

Animal-derived medicines have distinctive characteristics and significant curative effects, but most of them have an obvious fishy odor, resulting in the poor compliance of clinical patients. Trimethylamine (TMA) is one of the key fishy odor components in animal-derived medicine. It is difficult to identify TMA accurately using the existing detection method due to the increased pressure in the headspace vial caused by the rapid acid-base reaction after the addition of lye, which causes TMA to escape from the headspace vial, stalling the research progress of the fishy odor of animal-derived medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!