A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Three-Dimensional Arrayed Microfluidic Blood-Brain Barrier Model With Integrated Electrical Sensor Array. | LitMetric

Objective: The blood-brain barrier (BBB) poses a unique challenge to the development of therapeutics against neurological disorders due to its impermeabi-lity to most of the chemical compounds. Most in vitro BBB models have limitations in mimicking in vivo conditions and functions. Here, we show a co-culture microfluidic BBB-on-a-chip that provides interactions between neurovascular endothelial cells and neuronal cells across a porous polycarbonate membrane, which better mimics the in vivo conditions, as well as allows in vivo level shear stress to be applied.

Methods: A 4 × 4 intersecting microchannel array forms 16 BBB sites on a chip, with a multielectrode array integrated to measure the transendothelial electrical resistance (TEER) from all 16 different sites, which allows label-free real-time analysis of the barrier function. Primary mouse endothelial cells and primary astrocytes were co-cultured in the chip while applying in vivo level shear stress. The chip allows the barrier function to be analyzed through TEER measurement, dextran permeability, as well as immunostaining.

Results: Co-culture between astrocytes and endothelial cells, as well as in vivo level shear stress applied, led to the formation of tighter junctions and significantly lower barrier permeability. Moreover, drug testing with histamine showed increased permeability when using only endothelial cells compared to almost no change when using co-culture.

Conclusion: Results show that the developed BBB chip more closely mimics the in vivo BBB environment.

Significance: The developed multisite BBB chip is expected to be used for screening drug by more accurately predicting their permeability through BBB as well as their toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233983PMC
http://dx.doi.org/10.1109/TBME.2017.2773463DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
vivo level
12
level shear
12
shear stress
12
blood-brain barrier
8
vivo conditions
8
mimics vivo
8
barrier function
8
bbb chip
8
bbb
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!