Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Surface enhanced Raman scattering (SERS) is an ultra-sensitive spectroscopy technique, which can provide rich structural information for a great number of molecules, while solid phase micro-extraction (SPME) is an efficient method for sample pretreatment in analytical chemistry, particularly in a micro-system. In the present report, a silver-loaded and graphene-based magnetic composite (FeO@GO@Ag) was fabricated for use as both a SERS-active substrate and SPME material. The π-π stacking and fluorescence quenching abilities of GO make the composite a perfect candidate for SERS in analyzing real-world samples. Therefore, through combining the magnetic nanoparticles with a SPME device, we have developed a pretreatment method named as disperse magnetic solid phase micro-extraction (Dis-MSPME). In comparison to traditional SPME, the proposed Dis-MSPME realized solid phase micro-extraction from a dispersive system and largely improved the extraction efficiency. Furthermore, by combining the advantages of both Dis-MSPME and SERS we have proposed a new detection method called Dis-MSPME-SERS. Finally, as an example, the illegal additive chloramphenicol (CAP) was successfully detected in aqueous solution with low LOQ and LOD values (1.0 × 10 and 1.0 × 10 M, respectively), which was finalized within 10 min based on the proposed Dis-MSPME-SERS method. Therefore, a simpler, more efficient and sensitive approach to realize enrichment, magnetic separation and detection, all-in-one, for the detection of illegal additives has been reported, which will be promising towards the detection of trace amounts of substance in micro-systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7an01547j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!