A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combination of a graphene SERS substrate and magnetic solid phase micro-extraction used for the rapid detection of trace illegal additives. | LitMetric

Combination of a graphene SERS substrate and magnetic solid phase micro-extraction used for the rapid detection of trace illegal additives.

Analyst

State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P. R. China.

Published: February 2018

Surface enhanced Raman scattering (SERS) is an ultra-sensitive spectroscopy technique, which can provide rich structural information for a great number of molecules, while solid phase micro-extraction (SPME) is an efficient method for sample pretreatment in analytical chemistry, particularly in a micro-system. In the present report, a silver-loaded and graphene-based magnetic composite (FeO@GO@Ag) was fabricated for use as both a SERS-active substrate and SPME material. The π-π stacking and fluorescence quenching abilities of GO make the composite a perfect candidate for SERS in analyzing real-world samples. Therefore, through combining the magnetic nanoparticles with a SPME device, we have developed a pretreatment method named as disperse magnetic solid phase micro-extraction (Dis-MSPME). In comparison to traditional SPME, the proposed Dis-MSPME realized solid phase micro-extraction from a dispersive system and largely improved the extraction efficiency. Furthermore, by combining the advantages of both Dis-MSPME and SERS we have proposed a new detection method called Dis-MSPME-SERS. Finally, as an example, the illegal additive chloramphenicol (CAP) was successfully detected in aqueous solution with low LOQ and LOD values (1.0 × 10 and 1.0 × 10 M, respectively), which was finalized within 10 min based on the proposed Dis-MSPME-SERS method. Therefore, a simpler, more efficient and sensitive approach to realize enrichment, magnetic separation and detection, all-in-one, for the detection of illegal additives has been reported, which will be promising towards the detection of trace amounts of substance in micro-systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7an01547jDOI Listing

Publication Analysis

Top Keywords

solid phase
16
phase micro-extraction
16
magnetic solid
8
detection trace
8
illegal additives
8
magnetic
5
detection
5
combination graphene
4
sers
4
graphene sers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!