The present study aimed at identifying novel molecular cancer drug targets and biomarkers by analyzing the gene expression profiles of high-grade prostate cancer (PC), using a cDNA microarray combined with laser microbeam microdissection. A number of genes were identified that were transactivated in high-grade PC. First, a novel molecular target and diagnostic biomarker, shisa family member 2 (), was identified as an overexpressed gene in high-grade PC cells. The reverse transcription-semi-quantitative polymerase chain reaction and immunohistochemical analysis validated the overexpression of SHISA2 (295 amino acids in length), specifically in high-grade PC cells with Gleason scores of between 8 and 10, relative to normal prostate epithelium. Knockdown of expression by short interfering RNA resulted in the marked suppression of PC cell viability. By contrast, exogenous expression in transfected cells promoted PC cell proliferation, indicating its oncogenic effects. Notably, as a result of cDNA microarray analysis, protein Wnt-5a (WNT5A) was focused upon and the expression of WNT5A was identified to be downregulated in SHISA2-knockdown. Western blot analysis validated significant downregulation of WNT5A by SHISA2-knockdown and upregulation of WNT5A by SHISA2 overexpression. The results of the present study indicated that SHISA2 may affect WNT5A synthesis. Furthermore, the secreted SHISA2 protein was determined in the culture medium of PC cells. We hypothesize that SHISA2 is involved in the regulation of WNT5A and in the aggressiveness of PC via the Wnt signaling pathway through WNT5A. Furthermore, SHISA2 may be a molecular target for cancer drugs, and a useful diagnostic biomarker for the prognosis and therapeutic effect in cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5754837 | PMC |
http://dx.doi.org/10.3892/ol.2017.7099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!