Accumulation of oxidized amino acids, including methionine, has been implicated in aging. The ability to reduce one of the products of methionine oxidation, free methionine-R-sulfoxide (Met-R-SO), is widespread in microorganisms, but during evolution this function, conferred by the enzyme fRMsr, was lost in metazoa. We examined whether restoration of the fRMsr function in an animal can alleviate the consequences of methionine oxidation. Ectopic expression of yeast fRMsr supported the ability of Drosophila to catalyze free Met-R-SO reduction without affecting fecundity, food consumption, and response to starvation. fRMsr expression also increased resistance to oxidative stress. Moreover, it extended lifespan of flies in a methionine-dependent manner. Thus, expression of an oxidoreductase lost during evolution can enhance metabolic and redox functions and lead to an increase in lifespan in an animal model. More broadly, our study exposes the potential of a combination of genetic and nutritional strategies in lifespan control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5798039PMC
http://dx.doi.org/10.1038/s41598-017-15090-5DOI Listing

Publication Analysis

Top Keywords

lost evolution
8
methionine-dependent manner
8
methionine oxidation
8
expression
4
expression methionine
4
methionine sulfoxide
4
sulfoxide reductase
4
reductase lost
4
evolution extends
4
extends drosophila
4

Similar Publications

Recently published data suggested significantly lower pacing-induced cardiomyopathy (PICM) incidence with conduction system pacing (CSP). Because most data evaluated only the impact on the left ventricle, this study aimed to assess changes in echocardiographic parameters of morphology and function for all heart chambers in patients with baseline preserved and mid-range LVEF over a medium-term follow-up period after CSP. A total of 128 consecutive patients with LVEF > 40% and successful CSP for bradyarrhythmic indication were prospectively enrolled.

View Article and Find Full Text PDF

Several peptides interact with phylogenetically unrelated G protein-coupled receptors (GPCRs); similarly, orthologous GPCRs interact with distinct ligands. The neuropeptide Substance P (SP) activates both NK1R and another unrelated primate-specific GPCR, MRGPRX2. Furthermore, MRGPRX 1, a paralog of MRGPRX2, recognizes BAM8-22, which has no evolutionary relatedness to SP.

View Article and Find Full Text PDF

Mutations can be beneficial by bringing innovation to their bearer, allowing them to adapt to environmental change. These mutations are typically unpredictable since they respond to an unforeseen change in the environment. However, mutations can also be beneficial because they are simply restoring a state of higher fitness that was lost due to genetic drift in a stable environment.

View Article and Find Full Text PDF

Background: Diarrhoeal diseases claim more than 1 million lives annually and are a leading cause of death in children younger than 5 years. Comprehensive global estimates of the diarrhoeal disease burden for specific age groups of children younger than 5 years are scarce, and the burden in children older than 5 years and in adults is also understudied. We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to assess the burden of, and trends in, diarrhoeal diseases overall and attributable to 13 pathogens, as well as the contributions of associated risk factors, in children and adults in 204 countries and territories from 1990 to 2021.

View Article and Find Full Text PDF

An evolutionary perspective on the relationship between kinetochore size and CENP-E dependence for chromosome alignment.

J Cell Sci

December 2024

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 400-135 Porto, Portugal.

Chromosome alignment during mitosis can occur as a consequence of bi-orientation or is assisted by the CENP-E (kinesin-7) motor at kinetochores. We previously found that Indian muntjac chromosomes with larger kinetochores bi-orient more efficiently and are biased to align in a CENP-E-independent manner, suggesting that CENP-E dependence for chromosome alignment negatively correlates with kinetochore size. Here, we used targeted phylogenetic profiling of CENP-E in monocentric (localized centromeres) and holocentric (centromeres spanning the entire chromosome length) clades to test this hypothesis at an evolutionary scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!