Understanding nanoscale thermal transport is of substantial importance for designing contemporary semiconductor technologies. Heat removal from small sources is well established to be severely impeded compared to diffusive predictions due to the ballistic nature of the dominant heat carriers. Experimental observations are commonly interpreted through a reduction of effective thermal conductivity, even though most measurements only probe a single aggregate thermal metric. Here, we employ thermoreflectance thermal imaging to directly visualise the 2D temperature field produced by localised heat sources on InGaAs with characteristic widths down to 100 nm. Besides displaying effective thermal performance reductions up to 50% at the active junctions in agreement with prior studies, our steady-state thermal images reveal that, remarkably, 1-3 μm adjacent to submicron devices the crosstalk is actually reduced by up to fourfold. Submicrosecond transient imaging additionally shows responses to be faster than conventionally predicted. A possible explanation based on hydrodynamic heat transport, and some open questions, are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772674 | PMC |
http://dx.doi.org/10.1038/s41467-017-02652-4 | DOI Listing |
Colloids Surf B Biointerfaces
January 2025
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea. Electronic address:
In recent years, the design of various ultrasound responsive echogenic nanomaterials offers many advantages such as deep tissue penetration, high signal intensity, colloidal stability, biocompatibility and less expensive for ultrasound-based cancer cell imaging while providing the option to monitor the progress of tumor volume during the treatment. Further, the ability of nanomaterials to combine photo-thermal therapy (PTT) and chemotherapy has opened a new avenue in the development of cancer theranostics for synergistic cancer therapy. Herein, we report MoS nanoflowers (NFs) surface decorated with CuS nanorods (NRs) and folic acid-derived carbon dots (FACDs) using cystine-polyethyleneimine (PEI) linker for PTT-chemotherapy.
View Article and Find Full Text PDFWaste Manag
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. Electronic address:
Determination of the relative compositions of the mixed construction waste is crucial and an important step to enhance resource management. This information influences the design of construction waste recycling and sorting facilities, and aids in formulating effective management strategies for recycled and sorted waste products. However, different methods for waste sorting and composition recognition possess distinct characteristics and only apply to specific practical scenarios.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Objective: This study aimed to introduce and evaluate a novel software-based system, BioTrace, designed for real-time monitoring of thermal ablation tissue damage during image-guided radiofrequency ablation for hepatocellular carcinoma (HCC).
Methods: BioTrace utilizes a proprietary algorithm to analyze the temporo-spatial behavior of thermal gas bubble activity during ablation, as seen in conventional B-mode ultrasound imaging. Its predictive accuracy was assessed by comparing the ablation zones it predicted with those annotated by radiologists using contrast-enhanced computed tomography (CECT) 24 hours post-treatment, considered the gold standard.
PLoS One
January 2025
College of Physics and Electronic Engineering, Hainan Normal University, HaiKou, China.
We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.
The noise equivalent temperature difference (NETD) indicates the minimum temperature difference resolvable by using an infrared detector. The lower the NETD, the better the sensor can register small temperature differences. In this work, we proposed a strategy to achieve a high temperature resolution using a superconducting nanowire single-photon detector (SNSPD) with ultra-high sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!