Combined radiotherapy and hyperthermia offer great potential for the successful treatment of radio-resistant tumours through thermo-radiosensitization. Tumour response heterogeneity, due to intrinsic, or micro-environmentally induced factors, may greatly influence treatment outcome, but is difficult to account for using traditional treatment planning approaches. Systems oncology simulation, using mathematical models designed to predict tumour growth and treatment response, provides a powerful tool for analysis and optimization of combined treatments. We present a framework that simulates such combination treatments on a cellular level. This multiscale hybrid cellular automaton simulates large cell populations (up to 10 cells) , while allowing individual cell-cycle progression, and treatment response by modelling radiation-induced mitotic cell death, and immediate cell kill in response to heating. Based on a calibration using a number of experimental growth, cell cycle and survival datasets for HCT116 cells, model predictions agreed well ( > 0.95) with experimental data within the range of (thermal and radiation) doses tested (0-40 CEM43, 0-5 Gy). The proposed framework offers flexibility for modelling multimodality treatment combinations in different scenarios. It may therefore provide an important step towards the modelling of personalized therapies using a virtual patient tumour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805969 | PMC |
http://dx.doi.org/10.1098/rsif.2017.0681 | DOI Listing |
JCI Insight
January 2025
Medical Oncology Department, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands.
Background: Previously, we demonstrated that changes in circulating tumor DNA (ctDNA) are promising biomarkers for early response prediction (ERP) to immune checkpoint inhibitors (ICI) in metastatic urothelial cancer (mUC). In this study, we investigated the value of whole blood immunotranscriptomics for ERP-ICI and integrated both biomarkers into a multimodal model to boost accuracy.
Methods: Blood samples of 93 patients were collected at baseline and after 2-6 weeks of ICI for ctDNA (N=88) and immunotranscriptome (N=79) analyses.
Br J Dermatol
January 2025
Centre of Evidence Based Dermatology, School of Medicine, Faculty of Medicine & Health Sciences, University of Nottingham, UK.
Background: Randomised controlled trials (RCTs) evaluating new systemic treatments for atopic dermatitis (AD) have increased dramatically over the last decade. These trials often incorporate topical therapies either as permitted concomitant or rescue treatments. Differential use of these topicals post-randomisation introduces potential bias as they may nullify or exaggerate treatment responses.
View Article and Find Full Text PDFPulmonology
December 2025
Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China.
ACS Appl Bio Mater
January 2025
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO-Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response.
View Article and Find Full Text PDFJ Prim Care Community Health
January 2025
Instituto de Investigación Biomédica de Málaga, Málaga, Spain.
Aim: To investigate the detection and initial management of first psychotic episodes, as well as established schizophrenia, within the primary care of the Andalusian Health System.
Background: Delay in detecting and treating psychosis is associated with slower recovery, higher relapse risk, and poorer long-term outcomes. Often, psychotic episodes go unnoticed for years before a diagnosis is established.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!