Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Hospitals use antibiograms to guide optimal empiric antibiotic therapy, reduce inappropriate antibiotic usage, and identify areas requiring intervention by antimicrobial stewardship programs. Creating a hospital antibiogram is a time-consuming manual process that is typically performed annually.
Objective: We aimed to apply visual analytics software to electronic health record (EHR) data to build an automated, electronic antibiogram ("e-antibiogram") that adheres to national guidelines and contains filters for patient characteristics, thereby providing access to detailed, clinically relevant, and up-to-date antibiotic susceptibility data.
Methods: We used visual analytics software to develop a secure, EHR-linked, condition- and patient-specific e-antibiogram that supplies susceptibility maps for organisms and antibiotics in a comprehensive report that is updated on a monthly basis. Antimicrobial susceptibility data were grouped into nine clinical scenarios according to the specimen source, hospital unit, and infection type. We implemented the e-antibiogram within the EHR system at Children's Hospital of Philadelphia, a tertiary pediatric hospital and analyzed e-antibiogram access sessions from March 2016 to March 2017.
Results: The e-antibiogram was implemented in the EHR with over 6,000 inpatient, 4,500 outpatient, and 3,900 emergency department isolates. The e-antibiogram provides access to rolling 12-month pathogen and susceptibility data that is updated on a monthly basis. E-antibiogram access sessions increased from an average of 261 sessions per month during the first 3 months of the study to 345 sessions per month during the final 3 months.
Conclusion: An e-antibiogram that was built and is updated using EHR data and adheres to national guidelines is a feasible replacement for an annual, static, manually compiled antibiogram. Future research will examine the impact of the e-antibiogram on antibiotic prescribing patterns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801883 | PMC |
http://dx.doi.org/10.1055/s-0037-1615787 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!