The environment can influence heterosis, the phenomena in which the offspring of two inbred parents exhibits phenotypic performance beyond the inbred parents for specific traits. In this study we measured 25 traits in a set of 47 maize hybrids and their inbred parents grown in 16 different environments with varying levels of average productivity. By quantifying 25 vegetative and reproductive traits across the life cycle we were able to analyze interactions between the environment and multiple distinct instances of heterosis. The magnitude and rank among hybrids for better-parent heterosis (BPH) varied for the different traits and environments. Across the traits, a higher within plot variance was observed for inbred lines compared to hybrids. However, for most traits, variance across environments was not significantly different for inbred lines compared to hybrids. Further, for many traits the correlations of BPH to hybrid performance and BPH to better parent performance were of comparable magnitude. These results indicate that inbred lines and hybrids show similar trends in environmental response and both are contributing to observed genotype-by-environment interactions for heterosis. This study highlights the degree of heterosis is not an inherent trait of a specific hybrid, but varies depending on the trait measured and the environment where that trait is measured. Studies that attempt to correlate molecular processes with heterosis are hindered by the fact that heterosis is not a consistent attribute of a specific hybrid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5771596 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191321 | PLOS |
PLoS One
December 2024
Janssen Vaccines & Prevention, Leiden, The Netherlands.
Herpes Simplex virus (HSV) is the cause of genital herpes and no prophylactic treatment is currently available. Replication-incompetent adenoviral vectors are potent inducers of humoral and cellular immune responses in humans. We have designed an adenoviral vector type 35 (Ad35)-based vaccine encoding the HSV-2 major surface antigen gD2 (Ad35.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Scienes, Guangzhou, China.
CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.
View Article and Find Full Text PDFVirulence
December 2025
Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Drug addiction is a multifactorial syndrome in which genetic predispositions and exposure to environmental stressors constitute major risk factors for the early onset, escalation, and relapse of addictive behaviors. While it is well known that stress plays a key role in drug addiction, the genetic factors that make certain individuals particularly sensitive to stress and, thereby, more vulnerable to becoming addicted are unknown. In an effort to test a complex set of gene x environment interactions-specifically gene x chronic stress-here we leveraged a systems genetics resource: BXD recombinant inbred mice (BXD5, BXD8, BXD14, BXD22, BXD29, and BXD32) and their parental mouse lines, C57BL/6J and DBA/2J.
View Article and Find Full Text PDFTheor Appl Genet
December 2024
Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!