House flies (Musca domestica) are worldwide agricultural pests with estimated control costs at $375 million annually in the U.S. Non-target effects and widespread resistance challenge the efficacy of traditional chemical control. Double stranded RNA (dsRNA) has been suggested as a biopesticide for M. domestica but a phenotypic response due to the induction of the RNAi pathway has not been demonstrated in adults. In this study female house flies were injected with dsRNA targeting actin-5C or ribosomal protein (RP) transcripts RPL26 and RPS6. Ovaries showed highly reduced provisioning and clutch reductions of 94-99% in RP dsRNA treated flies but not in actin-5C or GFP treated flies. Gene expression levels were significantly and specifically reduced in dsRNA injected groups but remained unchanged in the control dsGFP treated group. Furthermore, injections with an Aedes aegypti conspecific dsRNA designed against RPS6 did not impact fecundity, demonstrating species specificity of the RNAi response. Analysis of M. domestica tissues following RPS6 dsRNA injection showed significant reduction of transcript levels in the head, thorax, and abdomen but increased expression in ovarian tissues. This study demonstrates that exogenous dsRNA is specifically effective and has potential efficacy as a highly specific biocontrol intervention in adult house flies. Further work is required to develop effective methods for delivery of dsRNA to adult flies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5771563 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187353 | PLOS |
J Econ Entomol
January 2025
United States Department of Agriculture, Agricultural Research Service, Center for Grain and Animal Health Research, Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS, USA.
House flies, Musca domestica L. (Diptera: Muscidae), are commonplace pests in both urban and agricultural settings. The potential for house flies as vectors of many disease-causing organisms to humans and animals, coupled with their incessant nuisance behaviors toward these hosts has resulted in a desire to manage their populations.
View Article and Find Full Text PDFPathogens
December 2024
Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia.
The West Nile virus (WNV) has recently become more widespread, posing a threat to both human and animal health. In Western Europe, most outbreaks have been caused by WNV lineage 1, while in Eastern Europe, WNV lineage 2 has led to human and bird mortality. The ability to appropriately manage this threat is dependent on integrated surveillance and early detection.
View Article and Find Full Text PDFThe study of heat tolerance in Drosophila melanogaster has been of particular interest to researchers for decades, with a common approach to assessing heat tolerance being to monitor the time to knockdown (TKD) after exposure to an elevated temperature. Classically, flies are housed in individual vials and placed inside a heated water bath. TKD is then monitored manually by researchers.
View Article and Find Full Text PDFMed Vet Entomol
December 2024
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Aedes albopictus (Skuse) and Aedes aegypti L. (Diptera: Culicidae) are invasive species known for their notable expansion capacity, which makes them relevant in the context of public health due to their role as vectors. In Argentina, these species coexist in a limited subtropical area in Northeastern part of the country.
View Article and Find Full Text PDFTrop Med Infect Dis
December 2024
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium.
is a vector of , the causative agent of cutaneous leishmaniasis. This study assessed the abundance and distribution of in different habitats and human houses situated at varying distances from hyrax (reservoir host) dwellings, in Wolaita Zone, southern Ethiopia. Sandflies were collected from January 2020 to December 2021 using CDC light traps, sticky paper traps, and locally made emergence traps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!