Classical or M1 activity of microglia/macrophages has been described in several neurodegenerative and brain inflammatory conditions and has also been linked to expansion of ischemic injury in post-stroke brain. While different pathways of M1 polarization have been suggested to occur in the post-stroke brain, the precise underlying mechanisms remain undefined. Using a transient middle cerebral artery occlusion (MCAO) rat model, we showed a progressive M2 to M1 polarization in the perilesional brain region with M1 cells becoming one of the dominant subsets by day 4 post-stroke. Comparing key receptors involved in M1 polarization (CD8, IFNγR, Clec4, FcγR, TLR3 and TLR4) and their signal transducers (Syk, Stat1, Irf3, and Traf6) at the day 4 time point, we showed a strong upregulation of CD8 along with SYK transducer in dissected perilesional brain tissue. We further showed that CD8 expression in the post-stroke brain was associated with activated (CD68+) macrophages and that progressive accumulation of CD8+CD68+ cells in the post-stroke brain coincided with increased iNOS (M1 marker) and reduced Arg1 (M2 marker) expression on these cells. In vitro ligand-based stimulation of the CD8 receptor caused increased iNOS expression and an enhanced capacity to phagocytose E. coli particles; and interestingly, CD8 stimulation was also able to repolarize IL4-treated M2 cells to an M1 phenotype. Our data suggest that increased CD8 signaling in the post-stroke brain is primarily associated with microglia/macrophages and can independently drive M1 polarization, and that modulation of CD8 signaling could be a potential target to limit secondary post-stroke brain damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5771556 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186937 | PLOS |
J Neurochem
January 2025
Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Brain damage induced by ischemia promotes the development of cognitive dysfunction, thus increasing the risk of dementia such as Alzheimer's disease (AD). Studies indicate that cellular acidification-triggered activation of asparagine endopeptidase (AEP) plays a key role in ischemic brain injury, through multiple molecular pathways, including cleavage of its substrates such as SET (inhibitor 2 of PP2A, I ) and Tau. However, whether direct targeting AEP can effectively prevent post-stroke cognitive impairment (PSCI) remains unanswered.
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
January 2025
Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; Neurorehabilitation and Recovery, The Florey, Heidelberg, Australia. Electronic address:
Objectives: Knowledge of the trajectory of post-stroke depression is important to identify high-risk patients, develop precise management programs and enhance prognosis. We aimed to characterise the course of depressive symptoms within the first year post-stroke and to evaluate associations with time.
Materials And Methods: Depressive symptoms were measured using the Montgomery-Åsberg Depression Rating Scale (MADRS) within the first week, and at 3- and 12-months post-stroke.
Cerebellum
January 2025
Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau, ICM, Paris, F-75013, France.
Cerebellar functional and structural connectivity are likely related to motor function after stroke. Less is known about motor recovery, which is defined as a gain of function between two time points, and about the involvement of the cerebellum. Fifteen patients who were hospitalized between 2018 and 2020 for a first cerebral ischemic event with persistent upper limb deficits were assessed by resting-state functional MRI (rsfMRI) and clinical motor score measurements at 3, 9 and 15 weeks after stroke.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China.
Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function.
View Article and Find Full Text PDFNeurol Res Pract
January 2025
Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
Background: Apraxia is a motor-cognitive disorder that primary sensorimotor deficits cannot solely explain. Previous research in stroke patients has focused on damage to the fronto-parietal praxis networks in the left hemisphere (LH) as the cause of apraxic deficits. In contrast, the potential role of the (left) primary motor cortex (M1) has largely been neglected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!