Activation of estrogen receptor beta (ERβ) regulates the expression of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells.

Int J Biochem Cell Biol

Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil. Electronic address:

Published: March 2018

The aim of the present study was to investigate the impact of the activation of estrogen receptors on expression and localization of N-cadherin, E-cadherin and non-phosphorylated β-catenin in androgen-independent prostate cancer cells (PC-3 and DU-145) and in human post pubertal prostate epithelial cells (PNT1A). Expression of N-cadherin was detected in PNT1A and PC-3 cells, but not in DU-145 cells. E-cadherin was detected only in DU-145 cells and β-catenin was detected in all cells studied. N-cadherin and β-catenin were located preferentially in the cellular membrane of PNT1A cells and in the cytoplasm of PC-3 cells. E-cadherin and β-catenin were located preferentially in the cellular membrane of DU-145 cells. 17β-estradiol (E2) or the ERα-selective agonist PPT did not affect the content and localization of N-cadherin in PC-3 and PNT1A cells or E-cadherin in DU-145 cells. In PC-3 cells, ERβ-selective agonist DPN decreased the expression of N-cadherin. DPN-induced downregulation of N-cadherin was blocked by pretreatment with the ERβ-selective antagonist (PHTPP), indicating that ERβ1 is the upstream receptor regulating the expression of N-cadherin. In DU-145 cells, the activation of ERβ1 by DPN increased the expression of E-cadherin. Taken together, these results suggest that activation of ERβ1 is required to maintain an epithelial phenotype in PC-3 and DU-145 cells. The activation of ERβ1 also increased the expression of β-catenin in cytoplasm of PC-3 and in the cellular membrane of DU-145 cells. In conclusion, our results indicate differential expression and localization of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells. The reduction of N-cadherin content by activation of ERβ, exclusively observed in androgen-independent prostate cancer cells (PC-3), may be related to the activation of signaling pathways, such as the release of β-catenin into the cytoplasm, translocation of β-catenin to the nucleus and activation of gene transcription.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2018.01.008DOI Listing

Publication Analysis

Top Keywords

du-145 cells
28
cells
18
expression n-cadherin
16
androgen-independent prostate
16
prostate cancer
16
cancer cells
16
n-cadherin e-cadherin
12
e-cadherin β-catenin
12
β-catenin androgen-independent
12
localization n-cadherin
12

Similar Publications

Docetaxel (DTX) is the preferred chemotherapeutic drug for prostate cancer (Pca), but the emergence of resistance has significantly reduced its efficacy. Polyphyllin VII (PPVII), a small molecule natural product derived from the traditional herb Paris polyphylla, has shown anticancer potential. This study aims to investigate the effects and mechanisms of PPVII combined with DTX in treating Pca.

View Article and Find Full Text PDF

Pharmacological Properties of Extracts-A Plant Used to Treat and Manage Elephantiasis.

Int J Mol Sci

January 2025

Infectious Diseases and Medicinal Plants Research Niche Area, Botany Department, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.

(Thunb.) Less. has recently become a plant species of interest to researchers due to its biological activities and less toxic effects.

View Article and Find Full Text PDF

Effect of Propolis on PPP2R1A and Apoptosis in Cancer Cells.

Biochem Res Int

January 2025

Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir, Türkiye.

Recently, it has been shown that protein phosphatase 2A (PP2A) dysfunction was common in many cancer types and was mediated by various inactivation mechanisms. Although many research studies observed antitumor effect of propolis extracts in various types of cancer, the mechanism of effect are still obscure. In this study, we investigated the effect of propolis on PPP2R1A expression and its relationship with apoptosis in the SW-620 (colorectal cancer), DU-145 and PC-3 (prostate cancer), and MCF-7 (breast cancer) cell lines, with WI-38 (healthy fibroblast) cells serving as the control.

View Article and Find Full Text PDF

Signaling crosstalk of Galectin-3, β-catenin, and estrogen receptor in androgen-independent prostate cancer DU-145 cells.

J Steroid Biochem Mol Biol

January 2025

Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil. Electronic address:

The aims of this study were to investigate the localization of non-phosphorylated β‑catenin and Galectin-3 (GAL-3), the regulation of the expression of both proteins by activation of estrogen receptors (ERs) and their role in tumorigenic characteristics of androgen-independent prostate cancer DU-145 cells. DU-145 cells were cultured in the absence (control), and presence of 17β-estradiol (E2). Cells were also untreated or pre-treated with the inhibitor of GAL‑3, VA03, or with a compound that disrupts the complex β-catenin-TCF/LEF transcription factor, PKF 118-310.

View Article and Find Full Text PDF

Background: Androgen receptor mutations, particularly T877A and W741L, promote prostate cancer (PCa). The main therapies against PCa use androgen receptor (AR) antagonists, including Bicalutamide; but these drugs lose their effectiveness over time. Chrysin is a flavonoid with several biological activities, including antitumoral properties; however, its potential as an antiandrogen must be explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!