We present experimental evidence for the different mechanisms driving the fluctuations of the local density of states (LDOS) in disordered photonic systems. We establish a clear link between the microscopic structure of the material and the frequency correlation function of LDOS accessed by a near-field hyperspectral imaging technique. We show, in particular, that short- and long-range frequency correlations of LDOS are controlled by different physical processes (multiple or single scattering processes, respectively) that can be-to some extent-manipulated independently. We also demonstrate that the single scattering contribution to LDOS fluctuations is sensitive to subwavelength features of the material and, in particular, to the correlation length of its dielectric function. Our work paves a way towards complete control of statistical properties of disordered photonic systems, allowing for designing materials with predefined correlations of LDOS.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.119.043902DOI Listing

Publication Analysis

Top Keywords

disordered photonic
12
local density
8
density states
8
photonic systems
8
correlations ldos
8
single scattering
8
ldos
5
tailoring correlations
4
correlations local
4
states disordered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!