Inelastic neutron scattering measurements were performed to study spin dynamics in the noncentrosymmetric antiferromagnet α-Cu_{2}V_{2}O_{7}. For the first time, nonreciprocal magnons were experimentally measured in an antiferromagnet. These nonreciprocal magnons are caused by the incompatibility between anisotropic exchange and antisymmetric Dzyaloshinskii-Moriya interactions, which arise from broken symmetry, resulting in a collinear ordered state but helical spin dynamics. The nonreciprocity introduces the difference in the phase velocity of the counterrotating modes, causing the opposite spontaneous magnonic Faraday rotation of the left- and right-propagating spin waves. The breaking of spatial inversion and time reversal symmetry is revealed as a magnetic-field-induced asymmetric energy shift, which provides a test for the detailed balance relation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.119.047201DOI Listing

Publication Analysis

Top Keywords

nonreciprocal magnons
12
noncentrosymmetric antiferromagnet
8
spin dynamics
8
magnons symmetry-breaking
4
symmetry-breaking noncentrosymmetric
4
antiferromagnet inelastic
4
inelastic neutron
4
neutron scattering
4
scattering measurements
4
measurements performed
4

Similar Publications

We introduce a novel, to the best of our knowledge, method to achieve a highly efficient nonreciprocal magnon laser within a spinning cavity optomagnonic system, which integrates a magnon mode and two optical modes. The rotation of the YIG sphere triggers the Barnett effect in the magnon mode and the Sagnac effect in the optical modes. The directional input of a pump light leads to opposite Sagnac-Fizeau frequency shifts in these modes.

View Article and Find Full Text PDF

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF

We propose a scheme to generate nonreciprocal entanglement and one-way steering between two distant ferrimagnetic microspheres in waveguide electromagnonics, where the magnon modes of two yttrium iron garnet (YIG) spheres are simultaneously coupled to each other through coherent and dissipative interactions. By matching the coherent interaction with its corresponding dissipative counterpart, unidirectional coupling between two magnon modes can be realized, and then in the presence of significant Kerr nonlinearities, we can obtain strong entanglement and one-way steering. Depending on the direction of the microwave propagation, the long-distance entanglement and steering can be generated nonreciprocally.

View Article and Find Full Text PDF

Interfacial coupling is one of the keys to manipulating magnetic/nonmagnetic two-dimensional (2D) heterostructures for novel functionalities. The MnPSe/graphene heterostructure is a prospective platform for quantum information and metrology. However, how graphene affects MnPSe through interfacial coupling is still poorly understood.

View Article and Find Full Text PDF

Photon-magnon coupling, where electromagnetic waves interact with spin waves, and negative refraction, which bends the direction of electromagnetic waves unnaturally, constitute critical foundations and advancements in the realms of optics, spintronics, and quantum information technology. Here, we explore a magnetic-field-controlled, on-off switchable, non-reciprocal negative refractive index within a non-Hermitian photon-magnon hybrid system. By integrating an yttrium iron garnet film with an inverted split-ring resonator, we discover pronounced negative refractive index driven by the system's non-Hermitian properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!