We report an experimental study of the scaling of zero-bias conductance peaks compatible with Majorana zero modes as a function of magnetic field, tunnel coupling, and temperature in one-dimensional structures fabricated from an epitaxial semiconductor-superconductor heterostructure. Results are consistent with theory, including a peak conductance that is proportional to tunnel coupling, saturates at 2e^{2}/h, decreases as expected with field-dependent gap, and collapses onto a simple scaling function in the dimensionless ratio of temperature and tunnel coupling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.119.136803 | DOI Listing |
Small
December 2024
Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China.
The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal-organic framework [CHNH]Co(HCOO).is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co) magnets.
View Article and Find Full Text PDFSmall Methods
December 2024
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China.
Memristors and magnetic tunnel junctions are showing great potential in data storage and computing applications. A magnetoelectrically coupled memristor utilizing electron spin and electric field-induced ion migration can facilitate their operation, uncover new phenomena, and expand applications. In this study, devices consisting of Pt/(LaCoO/SrTiO)/LaCoO/Nb:SrTiO (Pt/(LCO/STO)/LCO/NSTO) are engineered using pulsed laser deposition to form the LCO/STO superlattice layer, with Pt and NSTO serving as the top and bottom electrodes, respectively.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, 4056, Switzerland.
Many-body interactions in metal-organic frameworks (MOFs) are fundamental for emergent quantum physics. Unlike their solution counterpart, magnetization at surfaces in low-dimensional analogues is strongly influenced by magnetic anisotropy (MA) induced by the substrate and still not well understood. Here, on-surface coordination chemistry is used to synthesize on Ag(111) and superconducting Pb(111) an iron-based spin chain by using pyrene-4,5,9,10-tetraone (PTO) precursors as ligands.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland.
Designer heterostructures have offered a very powerful strategy to create exotic superconducting states by combining magnetism and superconductivity. In this Letter, we use a heterostructure platform combining supramolecular metal complexes (SMCs) with a quasi-2D van der Waals superconductor NbSe_{2}. Our scanning tunneling microscopy measurements demonstrate the emergence of Yu-Shiba-Rusinov bands arising from the interaction between the SMC magnetism and the NbSe_{2} superconductivity.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
The rotational spectra of a mixture of 2,4-pentanediol (PDL) isomers, comprising both the meso isomers [(2R, 4S) and (2S, 4R)] and the racemic isomers [(2R, 4R) and (2S, 4S)], were recorded using a chirped-pulse Fourier transform microwave spectrometer coupled to a supersonic jet expansion. The conformational landscapes of meso- and racemic-PDL were examined using the Conformer-Rotamer Ensemble Sampling Tool and high-level quantum chemical calculations, generating 26 and 25 conformers, respectively. Five sets of rotational transitions were observed and assigned, with two attributed to meso-PDL and the remaining three attributed to racemic-PDL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!